This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value for a given argument is not empty iff the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 4-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvn0elsuppb | |- ( ( B e. V /\ X e. B /\ G Fn B ) -> ( ( G ` X ) =/= (/) <-> X e. ( G supp (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvn0elsupp | |- ( ( ( B e. V /\ X e. B ) /\ ( G Fn B /\ ( G ` X ) =/= (/) ) ) -> X e. ( G supp (/) ) ) |
|
| 2 | 1 | exp43 | |- ( B e. V -> ( X e. B -> ( G Fn B -> ( ( G ` X ) =/= (/) -> X e. ( G supp (/) ) ) ) ) ) |
| 3 | 2 | 3imp | |- ( ( B e. V /\ X e. B /\ G Fn B ) -> ( ( G ` X ) =/= (/) -> X e. ( G supp (/) ) ) ) |
| 4 | simp3 | |- ( ( B e. V /\ X e. B /\ G Fn B ) -> G Fn B ) |
|
| 5 | simp1 | |- ( ( B e. V /\ X e. B /\ G Fn B ) -> B e. V ) |
|
| 6 | 0ex | |- (/) e. _V |
|
| 7 | 6 | a1i | |- ( ( B e. V /\ X e. B /\ G Fn B ) -> (/) e. _V ) |
| 8 | elsuppfn | |- ( ( G Fn B /\ B e. V /\ (/) e. _V ) -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) |
|
| 9 | 4 5 7 8 | syl3anc | |- ( ( B e. V /\ X e. B /\ G Fn B ) -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) |
| 10 | simpr | |- ( ( X e. B /\ ( G ` X ) =/= (/) ) -> ( G ` X ) =/= (/) ) |
|
| 11 | 9 10 | biimtrdi | |- ( ( B e. V /\ X e. B /\ G Fn B ) -> ( X e. ( G supp (/) ) -> ( G ` X ) =/= (/) ) ) |
| 12 | 3 11 | impbid | |- ( ( B e. V /\ X e. B /\ G Fn B ) -> ( ( G ` X ) =/= (/) <-> X e. ( G supp (/) ) ) ) |