This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by AV, 27-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexsupp | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ∃ 𝑥 ∈ ( 𝐹 supp 𝑍 ) 𝜑 ↔ ∃ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ∧ 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsuppfn | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) ) | |
| 2 | 1 | anbi1d | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ∧ 𝜑 ) ) ) |
| 3 | anass | ⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ∧ 𝜑 ) ) ) | |
| 4 | 2 3 | bitrdi | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( 𝑥 ∈ ( 𝐹 supp 𝑍 ) ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ∧ 𝜑 ) ) ) ) |
| 5 | 4 | rexbidv2 | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ∃ 𝑥 ∈ ( 𝐹 supp 𝑍 ) 𝜑 ↔ ∃ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ∧ 𝜑 ) ) ) |