This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of a mapping M to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function F restricted by the condition ps . (Contributed by AV, 31-Jan-2021) (Revised by AV, 29-Oct-2021) Add disjoint variable condition on F , x , y to remove a sethood hypothesis. (Revised by SN, 13-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptopab.1 | ⊢ ( 𝑧 = 𝑍 → ( 𝜑 ↔ 𝜓 ) ) | |
| fvmptopab.m | ⊢ 𝑀 = ( 𝑧 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑧 ) 𝑦 ∧ 𝜑 ) } ) | ||
| Assertion | fvmptopab | ⊢ ( 𝑀 ‘ 𝑍 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptopab.1 | ⊢ ( 𝑧 = 𝑍 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | fvmptopab.m | ⊢ 𝑀 = ( 𝑧 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑧 ) 𝑦 ∧ 𝜑 ) } ) | |
| 3 | fveq2 | ⊢ ( 𝑧 = 𝑍 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑍 ) ) | |
| 4 | 3 | breqd | ⊢ ( 𝑧 = 𝑍 → ( 𝑥 ( 𝐹 ‘ 𝑧 ) 𝑦 ↔ 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ) ) |
| 5 | 4 1 | anbi12d | ⊢ ( 𝑧 = 𝑍 → ( ( 𝑥 ( 𝐹 ‘ 𝑧 ) 𝑦 ∧ 𝜑 ) ↔ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) ) ) |
| 6 | 5 | opabbidv | ⊢ ( 𝑧 = 𝑍 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑧 ) 𝑦 ∧ 𝜑 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } ) |
| 7 | opabresex2 | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } ∈ V | |
| 8 | 6 2 7 | fvmpt | ⊢ ( 𝑍 ∈ V → ( 𝑀 ‘ 𝑍 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } ) |
| 9 | fvprc | ⊢ ( ¬ 𝑍 ∈ V → ( 𝑀 ‘ 𝑍 ) = ∅ ) | |
| 10 | elopabran | ⊢ ( 𝑧 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } → 𝑧 ∈ ( 𝐹 ‘ 𝑍 ) ) | |
| 11 | 10 | ssriv | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } ⊆ ( 𝐹 ‘ 𝑍 ) |
| 12 | fvprc | ⊢ ( ¬ 𝑍 ∈ V → ( 𝐹 ‘ 𝑍 ) = ∅ ) | |
| 13 | 11 12 | sseqtrid | ⊢ ( ¬ 𝑍 ∈ V → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } ⊆ ∅ ) |
| 14 | ss0 | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } ⊆ ∅ → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } = ∅ ) | |
| 15 | 13 14 | syl | ⊢ ( ¬ 𝑍 ∈ V → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } = ∅ ) |
| 16 | 9 15 | eqtr4d | ⊢ ( ¬ 𝑍 ∈ V → ( 𝑀 ‘ 𝑍 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } ) |
| 17 | 8 16 | pm2.61i | ⊢ ( 𝑀 ‘ 𝑍 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ( 𝐹 ‘ 𝑍 ) 𝑦 ∧ 𝜓 ) } |