This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of a mapping M to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function F restricted by the condition ps . (Contributed by AV, 31-Jan-2021) (Revised by AV, 29-Oct-2021) Add disjoint variable condition on F , x , y to remove a sethood hypothesis. (Revised by SN, 13-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptopab.1 | |- ( z = Z -> ( ph <-> ps ) ) |
|
| fvmptopab.m | |- M = ( z e. _V |-> { <. x , y >. | ( x ( F ` z ) y /\ ph ) } ) |
||
| Assertion | fvmptopab | |- ( M ` Z ) = { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptopab.1 | |- ( z = Z -> ( ph <-> ps ) ) |
|
| 2 | fvmptopab.m | |- M = ( z e. _V |-> { <. x , y >. | ( x ( F ` z ) y /\ ph ) } ) |
|
| 3 | fveq2 | |- ( z = Z -> ( F ` z ) = ( F ` Z ) ) |
|
| 4 | 3 | breqd | |- ( z = Z -> ( x ( F ` z ) y <-> x ( F ` Z ) y ) ) |
| 5 | 4 1 | anbi12d | |- ( z = Z -> ( ( x ( F ` z ) y /\ ph ) <-> ( x ( F ` Z ) y /\ ps ) ) ) |
| 6 | 5 | opabbidv | |- ( z = Z -> { <. x , y >. | ( x ( F ` z ) y /\ ph ) } = { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } ) |
| 7 | opabresex2 | |- { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } e. _V |
|
| 8 | 6 2 7 | fvmpt | |- ( Z e. _V -> ( M ` Z ) = { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } ) |
| 9 | fvprc | |- ( -. Z e. _V -> ( M ` Z ) = (/) ) |
|
| 10 | elopabran | |- ( z e. { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } -> z e. ( F ` Z ) ) |
|
| 11 | 10 | ssriv | |- { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } C_ ( F ` Z ) |
| 12 | fvprc | |- ( -. Z e. _V -> ( F ` Z ) = (/) ) |
|
| 13 | 11 12 | sseqtrid | |- ( -. Z e. _V -> { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } C_ (/) ) |
| 14 | ss0 | |- ( { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } C_ (/) -> { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } = (/) ) |
|
| 15 | 13 14 | syl | |- ( -. Z e. _V -> { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } = (/) ) |
| 16 | 9 15 | eqtr4d | |- ( -. Z e. _V -> ( M ` Z ) = { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } ) |
| 17 | 8 16 | pm2.61i | |- ( M ` Z ) = { <. x , y >. | ( x ( F ` Z ) y /\ ps ) } |