This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of a mapping M to a restricted binary relation expressed as an ordered-pair class abstraction: The restricted binary relation is a binary relation given as value of a function F restricted by the condition ps . (Contributed by AV, 31-Jan-2021) (Revised by AV, 29-Oct-2021) Add disjoint variable condition on F , x , y to remove a sethood hypothesis. (Revised by SN, 13-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptopab.1 | ||
| fvmptopab.m | |||
| Assertion | fvmptopab |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptopab.1 | ||
| 2 | fvmptopab.m | ||
| 3 | fveq2 | ||
| 4 | 3 | breqd | |
| 5 | 4 1 | anbi12d | |
| 6 | 5 | opabbidv | |
| 7 | opabresex2 | ||
| 8 | 6 2 7 | fvmpt | |
| 9 | fvprc | ||
| 10 | elopabran | ||
| 11 | 10 | ssriv | |
| 12 | fvprc | ||
| 13 | 11 12 | sseqtrid | |
| 14 | ss0 | ||
| 15 | 13 14 | syl | |
| 16 | 9 15 | eqtr4d | |
| 17 | 8 16 | pm2.61i |