This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for an operation to be one-to-one. (Contributed by Jeff Madsen, 17-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1opr | ⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –1-1→ 𝐶 ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑟 ∈ 𝐴 ∀ 𝑠 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ∀ 𝑢 ∈ 𝐵 ( ( 𝑟 𝐹 𝑠 ) = ( 𝑡 𝐹 𝑢 ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13 | ⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –1-1→ 𝐶 ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑣 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑤 ) → 𝑣 = 𝑤 ) ) ) | |
| 2 | fveq2 | ⊢ ( 𝑣 = 〈 𝑟 , 𝑠 〉 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 〈 𝑟 , 𝑠 〉 ) ) | |
| 3 | df-ov | ⊢ ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 〈 𝑟 , 𝑠 〉 ) | |
| 4 | 2 3 | eqtr4di | ⊢ ( 𝑣 = 〈 𝑟 , 𝑠 〉 → ( 𝐹 ‘ 𝑣 ) = ( 𝑟 𝐹 𝑠 ) ) |
| 5 | 4 | eqeq1d | ⊢ ( 𝑣 = 〈 𝑟 , 𝑠 〉 → ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑤 ) ↔ ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 6 | eqeq1 | ⊢ ( 𝑣 = 〈 𝑟 , 𝑠 〉 → ( 𝑣 = 𝑤 ↔ 〈 𝑟 , 𝑠 〉 = 𝑤 ) ) | |
| 7 | 5 6 | imbi12d | ⊢ ( 𝑣 = 〈 𝑟 , 𝑠 〉 → ( ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑤 ) → 𝑣 = 𝑤 ) ↔ ( ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) → 〈 𝑟 , 𝑠 〉 = 𝑤 ) ) ) |
| 8 | 7 | ralbidv | ⊢ ( 𝑣 = 〈 𝑟 , 𝑠 〉 → ( ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑤 ) → 𝑣 = 𝑤 ) ↔ ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) → 〈 𝑟 , 𝑠 〉 = 𝑤 ) ) ) |
| 9 | 8 | ralxp | ⊢ ( ∀ 𝑣 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑤 ) → 𝑣 = 𝑤 ) ↔ ∀ 𝑟 ∈ 𝐴 ∀ 𝑠 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) → 〈 𝑟 , 𝑠 〉 = 𝑤 ) ) |
| 10 | fveq2 | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 〈 𝑡 , 𝑢 〉 ) ) | |
| 11 | df-ov | ⊢ ( 𝑡 𝐹 𝑢 ) = ( 𝐹 ‘ 〈 𝑡 , 𝑢 〉 ) | |
| 12 | 10 11 | eqtr4di | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 𝐹 ‘ 𝑤 ) = ( 𝑡 𝐹 𝑢 ) ) |
| 13 | 12 | eqeq2d | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) ↔ ( 𝑟 𝐹 𝑠 ) = ( 𝑡 𝐹 𝑢 ) ) ) |
| 14 | eqeq2 | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 〈 𝑟 , 𝑠 〉 = 𝑤 ↔ 〈 𝑟 , 𝑠 〉 = 〈 𝑡 , 𝑢 〉 ) ) | |
| 15 | vex | ⊢ 𝑟 ∈ V | |
| 16 | vex | ⊢ 𝑠 ∈ V | |
| 17 | 15 16 | opth | ⊢ ( 〈 𝑟 , 𝑠 〉 = 〈 𝑡 , 𝑢 〉 ↔ ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) |
| 18 | 14 17 | bitrdi | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 〈 𝑟 , 𝑠 〉 = 𝑤 ↔ ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) |
| 19 | 13 18 | imbi12d | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) → 〈 𝑟 , 𝑠 〉 = 𝑤 ) ↔ ( ( 𝑟 𝐹 𝑠 ) = ( 𝑡 𝐹 𝑢 ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) ) |
| 20 | 19 | ralxp | ⊢ ( ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) → 〈 𝑟 , 𝑠 〉 = 𝑤 ) ↔ ∀ 𝑡 ∈ 𝐴 ∀ 𝑢 ∈ 𝐵 ( ( 𝑟 𝐹 𝑠 ) = ( 𝑡 𝐹 𝑢 ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) |
| 21 | 20 | 2ralbii | ⊢ ( ∀ 𝑟 ∈ 𝐴 ∀ 𝑠 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝑟 𝐹 𝑠 ) = ( 𝐹 ‘ 𝑤 ) → 〈 𝑟 , 𝑠 〉 = 𝑤 ) ↔ ∀ 𝑟 ∈ 𝐴 ∀ 𝑠 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ∀ 𝑢 ∈ 𝐵 ( ( 𝑟 𝐹 𝑠 ) = ( 𝑡 𝐹 𝑢 ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) |
| 22 | 9 21 | bitri | ⊢ ( ∀ 𝑣 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑤 ) → 𝑣 = 𝑤 ) ↔ ∀ 𝑟 ∈ 𝐴 ∀ 𝑠 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ∀ 𝑢 ∈ 𝐵 ( ( 𝑟 𝐹 𝑠 ) = ( 𝑡 𝐹 𝑢 ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) |
| 23 | 22 | anbi2i | ⊢ ( ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑣 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑤 ) → 𝑣 = 𝑤 ) ) ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑟 ∈ 𝐴 ∀ 𝑠 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ∀ 𝑢 ∈ 𝐵 ( ( 𝑟 𝐹 𝑠 ) = ( 𝑡 𝐹 𝑢 ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) ) |
| 24 | 1 23 | bitri | ⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –1-1→ 𝐶 ↔ ( 𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ∧ ∀ 𝑟 ∈ 𝐴 ∀ 𝑠 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ∀ 𝑢 ∈ 𝐵 ( ( 𝑟 𝐹 𝑠 ) = ( 𝑡 𝐹 𝑢 ) → ( 𝑟 = 𝑡 ∧ 𝑠 = 𝑢 ) ) ) ) |