This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate deduction version of fvmpt , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptdv2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | |
| fvmptdv2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
| fvmptdv2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 = 𝐶 ) | ||
| Assertion | fvmptdv2 | ⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptdv2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | |
| 2 | fvmptdv2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 3 | fvmptdv2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 = 𝐶 ) | |
| 4 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ) | |
| 5 | 1 | elexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 6 | isset | ⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) | |
| 7 | 5 6 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 ) |
| 8 | 2 | elexd | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ V ) |
| 9 | 3 8 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐶 ∈ V ) |
| 10 | 7 9 | exlimddv | ⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 11 | 4 3 1 10 | fvmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) |
| 12 | fveq1 | ⊢ ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) ) | |
| 13 | 12 | eqeq1d | ⊢ ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐶 ↔ ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) ) |
| 14 | 11 13 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ) |