This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate deduction version of fvmpt , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptdv2.1 | |- ( ph -> A e. D ) |
|
| fvmptdv2.2 | |- ( ( ph /\ x = A ) -> B e. V ) |
||
| fvmptdv2.3 | |- ( ( ph /\ x = A ) -> B = C ) |
||
| Assertion | fvmptdv2 | |- ( ph -> ( F = ( x e. D |-> B ) -> ( F ` A ) = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptdv2.1 | |- ( ph -> A e. D ) |
|
| 2 | fvmptdv2.2 | |- ( ( ph /\ x = A ) -> B e. V ) |
|
| 3 | fvmptdv2.3 | |- ( ( ph /\ x = A ) -> B = C ) |
|
| 4 | eqidd | |- ( ph -> ( x e. D |-> B ) = ( x e. D |-> B ) ) |
|
| 5 | 1 | elexd | |- ( ph -> A e. _V ) |
| 6 | isset | |- ( A e. _V <-> E. x x = A ) |
|
| 7 | 5 6 | sylib | |- ( ph -> E. x x = A ) |
| 8 | 2 | elexd | |- ( ( ph /\ x = A ) -> B e. _V ) |
| 9 | 3 8 | eqeltrrd | |- ( ( ph /\ x = A ) -> C e. _V ) |
| 10 | 7 9 | exlimddv | |- ( ph -> C e. _V ) |
| 11 | 4 3 1 10 | fvmptd | |- ( ph -> ( ( x e. D |-> B ) ` A ) = C ) |
| 12 | fveq1 | |- ( F = ( x e. D |-> B ) -> ( F ` A ) = ( ( x e. D |-> B ) ` A ) ) |
|
| 13 | 12 | eqeq1d | |- ( F = ( x e. D |-> B ) -> ( ( F ` A ) = C <-> ( ( x e. D |-> B ) ` A ) = C ) ) |
| 14 | 11 13 | syl5ibrcom | |- ( ph -> ( F = ( x e. D |-> B ) -> ( F ` A ) = C ) ) |