This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value in an image. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvelimad.x | ⊢ Ⅎ 𝑥 𝐹 | |
| fvelimad.f | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | ||
| fvelimad.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐹 “ 𝐵 ) ) | ||
| Assertion | fvelimad | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelimad.x | ⊢ Ⅎ 𝑥 𝐹 | |
| 2 | fvelimad.f | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| 3 | fvelimad.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐹 “ 𝐵 ) ) | |
| 4 | elimag | ⊢ ( 𝐶 ∈ ( 𝐹 “ 𝐵 ) → ( 𝐶 ∈ ( 𝐹 “ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 𝑦 𝐹 𝐶 ) ) | |
| 5 | 4 | ibi | ⊢ ( 𝐶 ∈ ( 𝐹 “ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 𝑦 𝐹 𝐶 ) |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐵 𝑦 𝐹 𝐶 ) |
| 7 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 8 | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) = 𝐶 | |
| 9 | vex | ⊢ 𝑦 ∈ V | |
| 10 | 9 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 ∈ V ) |
| 11 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 𝐹 𝐶 ) → 𝐶 ∈ ( 𝐹 “ 𝐵 ) ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 𝐹 𝐶 ) | |
| 13 | 10 11 12 | breldmd | ⊢ ( ( 𝜑 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 ∈ dom 𝐹 ) |
| 14 | 2 | fndmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 𝐹 𝐶 ) → dom 𝐹 = 𝐴 ) |
| 16 | 13 15 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 ∈ 𝐴 ) |
| 17 | 16 | 3adant2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 ∈ 𝐴 ) |
| 18 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 ∈ 𝐵 ) | |
| 19 | 17 18 | elind | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 20 | fnfun | ⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) | |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝐹 𝐶 ) → Fun 𝐹 ) |
| 23 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 𝐹 𝐶 ) | |
| 24 | funbrfv | ⊢ ( Fun 𝐹 → ( 𝑦 𝐹 𝐶 → ( 𝐹 ‘ 𝑦 ) = 𝐶 ) ) | |
| 25 | 22 23 24 | sylc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝐹 𝐶 ) → ( 𝐹 ‘ 𝑦 ) = 𝐶 ) |
| 26 | rspe | ⊢ ( ( 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝐶 ) → ∃ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) = 𝐶 ) | |
| 27 | 19 25 26 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝐹 𝐶 ) → ∃ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) = 𝐶 ) |
| 28 | 27 | 3exp | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → ( 𝑦 𝐹 𝐶 → ∃ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) = 𝐶 ) ) ) |
| 29 | 7 8 28 | rexlimd | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐵 𝑦 𝐹 𝐶 → ∃ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) = 𝐶 ) ) |
| 30 | 6 29 | mpd | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) = 𝐶 ) |
| 31 | nfv | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 ) = 𝐶 | |
| 32 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 33 | 1 32 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
| 34 | 33 | nfeq1 | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝐶 |
| 35 | fveqeq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ( 𝐹 ‘ 𝑦 ) = 𝐶 ) ) | |
| 36 | 31 34 35 | cbvrexw | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ∃ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) = 𝐶 ) |
| 37 | 30 36 | sylibr | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |