This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value in an image. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvelimad.x | |- F/_ x F |
|
| fvelimad.f | |- ( ph -> F Fn A ) |
||
| fvelimad.c | |- ( ph -> C e. ( F " B ) ) |
||
| Assertion | fvelimad | |- ( ph -> E. x e. ( A i^i B ) ( F ` x ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelimad.x | |- F/_ x F |
|
| 2 | fvelimad.f | |- ( ph -> F Fn A ) |
|
| 3 | fvelimad.c | |- ( ph -> C e. ( F " B ) ) |
|
| 4 | elimag | |- ( C e. ( F " B ) -> ( C e. ( F " B ) <-> E. y e. B y F C ) ) |
|
| 5 | 4 | ibi | |- ( C e. ( F " B ) -> E. y e. B y F C ) |
| 6 | 3 5 | syl | |- ( ph -> E. y e. B y F C ) |
| 7 | nfv | |- F/ y ph |
|
| 8 | nfre1 | |- F/ y E. y e. ( A i^i B ) ( F ` y ) = C |
|
| 9 | vex | |- y e. _V |
|
| 10 | 9 | a1i | |- ( ( ph /\ y F C ) -> y e. _V ) |
| 11 | 3 | adantr | |- ( ( ph /\ y F C ) -> C e. ( F " B ) ) |
| 12 | simpr | |- ( ( ph /\ y F C ) -> y F C ) |
|
| 13 | 10 11 12 | breldmd | |- ( ( ph /\ y F C ) -> y e. dom F ) |
| 14 | 2 | fndmd | |- ( ph -> dom F = A ) |
| 15 | 14 | adantr | |- ( ( ph /\ y F C ) -> dom F = A ) |
| 16 | 13 15 | eleqtrd | |- ( ( ph /\ y F C ) -> y e. A ) |
| 17 | 16 | 3adant2 | |- ( ( ph /\ y e. B /\ y F C ) -> y e. A ) |
| 18 | simp2 | |- ( ( ph /\ y e. B /\ y F C ) -> y e. B ) |
|
| 19 | 17 18 | elind | |- ( ( ph /\ y e. B /\ y F C ) -> y e. ( A i^i B ) ) |
| 20 | fnfun | |- ( F Fn A -> Fun F ) |
|
| 21 | 2 20 | syl | |- ( ph -> Fun F ) |
| 22 | 21 | 3ad2ant1 | |- ( ( ph /\ y e. B /\ y F C ) -> Fun F ) |
| 23 | simp3 | |- ( ( ph /\ y e. B /\ y F C ) -> y F C ) |
|
| 24 | funbrfv | |- ( Fun F -> ( y F C -> ( F ` y ) = C ) ) |
|
| 25 | 22 23 24 | sylc | |- ( ( ph /\ y e. B /\ y F C ) -> ( F ` y ) = C ) |
| 26 | rspe | |- ( ( y e. ( A i^i B ) /\ ( F ` y ) = C ) -> E. y e. ( A i^i B ) ( F ` y ) = C ) |
|
| 27 | 19 25 26 | syl2anc | |- ( ( ph /\ y e. B /\ y F C ) -> E. y e. ( A i^i B ) ( F ` y ) = C ) |
| 28 | 27 | 3exp | |- ( ph -> ( y e. B -> ( y F C -> E. y e. ( A i^i B ) ( F ` y ) = C ) ) ) |
| 29 | 7 8 28 | rexlimd | |- ( ph -> ( E. y e. B y F C -> E. y e. ( A i^i B ) ( F ` y ) = C ) ) |
| 30 | 6 29 | mpd | |- ( ph -> E. y e. ( A i^i B ) ( F ` y ) = C ) |
| 31 | nfv | |- F/ y ( F ` x ) = C |
|
| 32 | nfcv | |- F/_ x y |
|
| 33 | 1 32 | nffv | |- F/_ x ( F ` y ) |
| 34 | 33 | nfeq1 | |- F/ x ( F ` y ) = C |
| 35 | fveqeq2 | |- ( x = y -> ( ( F ` x ) = C <-> ( F ` y ) = C ) ) |
|
| 36 | 31 34 35 | cbvrexw | |- ( E. x e. ( A i^i B ) ( F ` x ) = C <-> E. y e. ( A i^i B ) ( F ` y ) = C ) |
| 37 | 30 36 | sylibr | |- ( ph -> E. x e. ( A i^i B ) ( F ` x ) = C ) |