This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvclss | ⊢ { 𝑦 ∣ ∃ 𝑥 𝑦 = ( 𝐹 ‘ 𝑥 ) } ⊆ ( ran 𝐹 ∪ { ∅ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) | |
| 2 | tz6.12i | ⊢ ( 𝑦 ≠ ∅ → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝑥 𝐹 𝑦 ) ) | |
| 3 | 1 2 | biimtrid | ⊢ ( 𝑦 ≠ ∅ → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑥 𝐹 𝑦 ) ) |
| 4 | 3 | eximdv | ⊢ ( 𝑦 ≠ ∅ → ( ∃ 𝑥 𝑦 = ( 𝐹 ‘ 𝑥 ) → ∃ 𝑥 𝑥 𝐹 𝑦 ) ) |
| 5 | vex | ⊢ 𝑦 ∈ V | |
| 6 | 5 | elrn | ⊢ ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 𝑥 𝐹 𝑦 ) |
| 7 | 4 6 | imbitrrdi | ⊢ ( 𝑦 ≠ ∅ → ( ∃ 𝑥 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ ran 𝐹 ) ) |
| 8 | 7 | com12 | ⊢ ( ∃ 𝑥 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑦 ≠ ∅ → 𝑦 ∈ ran 𝐹 ) ) |
| 9 | 8 | necon1bd | ⊢ ( ∃ 𝑥 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ¬ 𝑦 ∈ ran 𝐹 → 𝑦 = ∅ ) ) |
| 10 | velsn | ⊢ ( 𝑦 ∈ { ∅ } ↔ 𝑦 = ∅ ) | |
| 11 | 9 10 | imbitrrdi | ⊢ ( ∃ 𝑥 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ¬ 𝑦 ∈ ran 𝐹 → 𝑦 ∈ { ∅ } ) ) |
| 12 | 11 | orrd | ⊢ ( ∃ 𝑥 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑦 ∈ ran 𝐹 ∨ 𝑦 ∈ { ∅ } ) ) |
| 13 | 12 | ss2abi | ⊢ { 𝑦 ∣ ∃ 𝑥 𝑦 = ( 𝐹 ‘ 𝑥 ) } ⊆ { 𝑦 ∣ ( 𝑦 ∈ ran 𝐹 ∨ 𝑦 ∈ { ∅ } ) } |
| 14 | df-un | ⊢ ( ran 𝐹 ∪ { ∅ } ) = { 𝑦 ∣ ( 𝑦 ∈ ran 𝐹 ∨ 𝑦 ∈ { ∅ } ) } | |
| 15 | 13 14 | sseqtrri | ⊢ { 𝑦 ∣ ∃ 𝑥 𝑦 = ( 𝐹 ‘ 𝑥 ) } ⊆ ( ran 𝐹 ∪ { ∅ } ) |