This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of Theorem 6.12(2) of TakeutiZaring p. 27. (Contributed by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tz6.12i | ⊢ ( 𝐵 ≠ ∅ → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → 𝐴 𝐹 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 2 | neeq1 | ⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝑦 → ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ ↔ 𝑦 ≠ ∅ ) ) | |
| 3 | tz6.12-2 | ⊢ ( ¬ ∃! 𝑦 𝐴 𝐹 𝑦 → ( 𝐹 ‘ 𝐴 ) = ∅ ) | |
| 4 | 3 | necon1ai | ⊢ ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ → ∃! 𝑦 𝐴 𝐹 𝑦 ) |
| 5 | tz6.12c | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( ( 𝐹 ‘ 𝐴 ) = 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ → ( ( 𝐹 ‘ 𝐴 ) = 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) |
| 7 | 6 | biimpcd | ⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝑦 → ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ → 𝐴 𝐹 𝑦 ) ) |
| 8 | 2 7 | sylbird | ⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝑦 → ( 𝑦 ≠ ∅ → 𝐴 𝐹 𝑦 ) ) |
| 9 | 8 | eqcoms | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐴 ) → ( 𝑦 ≠ ∅ → 𝐴 𝐹 𝑦 ) ) |
| 10 | neeq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐴 ) → ( 𝑦 ≠ ∅ ↔ ( 𝐹 ‘ 𝐴 ) ≠ ∅ ) ) | |
| 11 | breq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐴 ) → ( 𝐴 𝐹 𝑦 ↔ 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) ) | |
| 12 | 9 10 11 | 3imtr3d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ → 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) ) |
| 13 | 1 12 | vtocle | ⊢ ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ → 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) |
| 14 | 13 | a1i | ⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ → 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) ) |
| 15 | neeq1 | ⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ ↔ 𝐵 ≠ ∅ ) ) | |
| 16 | breq2 | ⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → ( 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ↔ 𝐴 𝐹 𝐵 ) ) | |
| 17 | 14 15 16 | 3imtr3d | ⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → ( 𝐵 ≠ ∅ → 𝐴 𝐹 𝐵 ) ) |
| 18 | 17 | com12 | ⊢ ( 𝐵 ≠ ∅ → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → 𝐴 𝐹 𝐵 ) ) |