This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvclss | |- { y | E. x y = ( F ` x ) } C_ ( ran F u. { (/) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | |- ( y = ( F ` x ) <-> ( F ` x ) = y ) |
|
| 2 | tz6.12i | |- ( y =/= (/) -> ( ( F ` x ) = y -> x F y ) ) |
|
| 3 | 1 2 | biimtrid | |- ( y =/= (/) -> ( y = ( F ` x ) -> x F y ) ) |
| 4 | 3 | eximdv | |- ( y =/= (/) -> ( E. x y = ( F ` x ) -> E. x x F y ) ) |
| 5 | vex | |- y e. _V |
|
| 6 | 5 | elrn | |- ( y e. ran F <-> E. x x F y ) |
| 7 | 4 6 | imbitrrdi | |- ( y =/= (/) -> ( E. x y = ( F ` x ) -> y e. ran F ) ) |
| 8 | 7 | com12 | |- ( E. x y = ( F ` x ) -> ( y =/= (/) -> y e. ran F ) ) |
| 9 | 8 | necon1bd | |- ( E. x y = ( F ` x ) -> ( -. y e. ran F -> y = (/) ) ) |
| 10 | velsn | |- ( y e. { (/) } <-> y = (/) ) |
|
| 11 | 9 10 | imbitrrdi | |- ( E. x y = ( F ` x ) -> ( -. y e. ran F -> y e. { (/) } ) ) |
| 12 | 11 | orrd | |- ( E. x y = ( F ` x ) -> ( y e. ran F \/ y e. { (/) } ) ) |
| 13 | 12 | ss2abi | |- { y | E. x y = ( F ` x ) } C_ { y | ( y e. ran F \/ y e. { (/) } ) } |
| 14 | df-un | |- ( ran F u. { (/) } ) = { y | ( y e. ran F \/ y e. { (/) } ) } |
|
| 15 | 13 14 | sseqtrri | |- { y | E. x y = ( F ` x ) } C_ ( ran F u. { (/) } ) |