This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funimassd.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| funimassd.2 | ⊢ ( 𝜑 → Fun 𝐹 ) | ||
| funimassd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) | ||
| Assertion | funimassd | ⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimassd.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | funimassd.2 | ⊢ ( 𝜑 → Fun 𝐹 ) | |
| 3 | funimassd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) | |
| 4 | fvelima | ⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ ( 𝐹 “ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) | |
| 5 | 2 4 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐹 “ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
| 6 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ ( 𝐹 “ 𝐴 ) | |
| 7 | 1 6 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ ( 𝐹 “ 𝐴 ) ) |
| 8 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 | |
| 9 | id | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( 𝐹 ‘ 𝑥 ) = 𝑦 ) | |
| 10 | 9 | eqcomd | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 12 | 3 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 13 | 11 12 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ 𝐵 ) |
| 14 | 13 | 3exp | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ 𝐵 ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐹 “ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ 𝐵 ) ) ) |
| 16 | 7 8 15 | rexlimd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐹 “ 𝐴 ) ) → ( ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ 𝐵 ) ) |
| 17 | 5 16 | mpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐹 “ 𝐴 ) ) → 𝑦 ∈ 𝐵 ) |
| 18 | 17 | ex | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
| 19 | 18 | ssrdv | ⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ) |