This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funimassd.1 | |- F/ x ph |
|
| funimassd.2 | |- ( ph -> Fun F ) |
||
| funimassd.3 | |- ( ( ph /\ x e. A ) -> ( F ` x ) e. B ) |
||
| Assertion | funimassd | |- ( ph -> ( F " A ) C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimassd.1 | |- F/ x ph |
|
| 2 | funimassd.2 | |- ( ph -> Fun F ) |
|
| 3 | funimassd.3 | |- ( ( ph /\ x e. A ) -> ( F ` x ) e. B ) |
|
| 4 | fvelima | |- ( ( Fun F /\ y e. ( F " A ) ) -> E. x e. A ( F ` x ) = y ) |
|
| 5 | 2 4 | sylan | |- ( ( ph /\ y e. ( F " A ) ) -> E. x e. A ( F ` x ) = y ) |
| 6 | nfv | |- F/ x y e. ( F " A ) |
|
| 7 | 1 6 | nfan | |- F/ x ( ph /\ y e. ( F " A ) ) |
| 8 | nfv | |- F/ x y e. B |
|
| 9 | id | |- ( ( F ` x ) = y -> ( F ` x ) = y ) |
|
| 10 | 9 | eqcomd | |- ( ( F ` x ) = y -> y = ( F ` x ) ) |
| 11 | 10 | 3ad2ant3 | |- ( ( ph /\ x e. A /\ ( F ` x ) = y ) -> y = ( F ` x ) ) |
| 12 | 3 | 3adant3 | |- ( ( ph /\ x e. A /\ ( F ` x ) = y ) -> ( F ` x ) e. B ) |
| 13 | 11 12 | eqeltrd | |- ( ( ph /\ x e. A /\ ( F ` x ) = y ) -> y e. B ) |
| 14 | 13 | 3exp | |- ( ph -> ( x e. A -> ( ( F ` x ) = y -> y e. B ) ) ) |
| 15 | 14 | adantr | |- ( ( ph /\ y e. ( F " A ) ) -> ( x e. A -> ( ( F ` x ) = y -> y e. B ) ) ) |
| 16 | 7 8 15 | rexlimd | |- ( ( ph /\ y e. ( F " A ) ) -> ( E. x e. A ( F ` x ) = y -> y e. B ) ) |
| 17 | 5 16 | mpd | |- ( ( ph /\ y e. ( F " A ) ) -> y e. B ) |
| 18 | 17 | ex | |- ( ph -> ( y e. ( F " A ) -> y e. B ) ) |
| 19 | 18 | ssrdv | |- ( ph -> ( F " A ) C_ B ) |