This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the domain of a function G is a subset of the range of a function F , then the composition ( G o. F ) is surjective iff G is surjective. (Contributed by GL and AV, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funfocofob | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → ( ( 𝐺 ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐴 ) –onto→ 𝐵 ↔ 𝐺 : 𝐴 –onto→ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmrn | ⊢ ( Fun 𝐹 ↔ 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) | |
| 2 | 1 | biimpi | ⊢ ( Fun 𝐹 → 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) |
| 4 | 3 | adantr | ⊢ ( ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) ∧ ( 𝐺 ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐴 ) –onto→ 𝐵 ) → 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) |
| 5 | eqid | ⊢ ( ran 𝐹 ∩ 𝐴 ) = ( ran 𝐹 ∩ 𝐴 ) | |
| 6 | eqid | ⊢ ( ◡ 𝐹 “ 𝐴 ) = ( ◡ 𝐹 “ 𝐴 ) | |
| 7 | eqid | ⊢ ( 𝐹 ↾ ( ◡ 𝐹 “ 𝐴 ) ) = ( 𝐹 ↾ ( ◡ 𝐹 “ 𝐴 ) ) | |
| 8 | simp2 | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) | |
| 9 | 8 | adantr | ⊢ ( ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) ∧ ( 𝐺 ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐴 ) –onto→ 𝐵 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 10 | eqid | ⊢ ( 𝐺 ↾ ( ran 𝐹 ∩ 𝐴 ) ) = ( 𝐺 ↾ ( ran 𝐹 ∩ 𝐴 ) ) | |
| 11 | simpr | ⊢ ( ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) ∧ ( 𝐺 ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐴 ) –onto→ 𝐵 ) → ( 𝐺 ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐴 ) –onto→ 𝐵 ) | |
| 12 | 4 5 6 7 9 10 11 | fcoresfo | ⊢ ( ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) ∧ ( 𝐺 ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐴 ) –onto→ 𝐵 ) → ( 𝐺 ↾ ( ran 𝐹 ∩ 𝐴 ) ) : ( ran 𝐹 ∩ 𝐴 ) –onto→ 𝐵 ) |
| 13 | 12 | ex | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → ( ( 𝐺 ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐴 ) –onto→ 𝐵 → ( 𝐺 ↾ ( ran 𝐹 ∩ 𝐴 ) ) : ( ran 𝐹 ∩ 𝐴 ) –onto→ 𝐵 ) ) |
| 14 | sseqin2 | ⊢ ( 𝐴 ⊆ ran 𝐹 ↔ ( ran 𝐹 ∩ 𝐴 ) = 𝐴 ) | |
| 15 | 14 | biimpi | ⊢ ( 𝐴 ⊆ ran 𝐹 → ( ran 𝐹 ∩ 𝐴 ) = 𝐴 ) |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → ( ran 𝐹 ∩ 𝐴 ) = 𝐴 ) |
| 17 | 8 | fdmd | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → dom 𝐺 = 𝐴 ) |
| 18 | 16 17 | eqtr4d | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → ( ran 𝐹 ∩ 𝐴 ) = dom 𝐺 ) |
| 19 | 18 | reseq2d | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → ( 𝐺 ↾ ( ran 𝐹 ∩ 𝐴 ) ) = ( 𝐺 ↾ dom 𝐺 ) ) |
| 20 | 8 | freld | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → Rel 𝐺 ) |
| 21 | resdm | ⊢ ( Rel 𝐺 → ( 𝐺 ↾ dom 𝐺 ) = 𝐺 ) | |
| 22 | 20 21 | syl | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → ( 𝐺 ↾ dom 𝐺 ) = 𝐺 ) |
| 23 | 19 22 | eqtrd | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → ( 𝐺 ↾ ( ran 𝐹 ∩ 𝐴 ) ) = 𝐺 ) |
| 24 | eqidd | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → 𝐵 = 𝐵 ) | |
| 25 | 23 16 24 | foeq123d | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → ( ( 𝐺 ↾ ( ran 𝐹 ∩ 𝐴 ) ) : ( ran 𝐹 ∩ 𝐴 ) –onto→ 𝐵 ↔ 𝐺 : 𝐴 –onto→ 𝐵 ) ) |
| 26 | 13 25 | sylibd | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → ( ( 𝐺 ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐴 ) –onto→ 𝐵 → 𝐺 : 𝐴 –onto→ 𝐵 ) ) |
| 27 | simpr | ⊢ ( ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → 𝐺 : 𝐴 –onto→ 𝐵 ) | |
| 28 | simpl1 | ⊢ ( ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → Fun 𝐹 ) | |
| 29 | simpl3 | ⊢ ( ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → 𝐴 ⊆ ran 𝐹 ) | |
| 30 | focofo | ⊢ ( ( 𝐺 : 𝐴 –onto→ 𝐵 ∧ Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹 ) → ( 𝐺 ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐴 ) –onto→ 𝐵 ) | |
| 31 | 27 28 29 30 | syl3anc | ⊢ ( ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → ( 𝐺 ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐴 ) –onto→ 𝐵 ) |
| 32 | 31 | ex | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → ( 𝐺 : 𝐴 –onto→ 𝐵 → ( 𝐺 ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐴 ) –onto→ 𝐵 ) ) |
| 33 | 26 32 | impbid | ⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ) → ( ( 𝐺 ∘ 𝐹 ) : ( ◡ 𝐹 “ 𝐴 ) –onto→ 𝐵 ↔ 𝐺 : 𝐴 –onto→ 𝐵 ) ) |