This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | ||
| fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | ||
| fcores.x | ⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) | ||
| fcores.g | ⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) | ||
| fcores.y | ⊢ 𝑌 = ( 𝐺 ↾ 𝐸 ) | ||
| fcoresfo.s | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : 𝑃 –onto→ 𝐷 ) | ||
| Assertion | fcoresfo | ⊢ ( 𝜑 → 𝑌 : 𝐸 –onto→ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | |
| 3 | fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | |
| 4 | fcores.x | ⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) | |
| 5 | fcores.g | ⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) | |
| 6 | fcores.y | ⊢ 𝑌 = ( 𝐺 ↾ 𝐸 ) | |
| 7 | fcoresfo.s | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : 𝑃 –onto→ 𝐷 ) | |
| 8 | 2 | a1i | ⊢ ( 𝜑 → 𝐸 = ( ran 𝐹 ∩ 𝐶 ) ) |
| 9 | inss2 | ⊢ ( ran 𝐹 ∩ 𝐶 ) ⊆ 𝐶 | |
| 10 | 8 9 | eqsstrdi | ⊢ ( 𝜑 → 𝐸 ⊆ 𝐶 ) |
| 11 | 5 10 | fssresd | ⊢ ( 𝜑 → ( 𝐺 ↾ 𝐸 ) : 𝐸 ⟶ 𝐷 ) |
| 12 | 6 | feq1i | ⊢ ( 𝑌 : 𝐸 ⟶ 𝐷 ↔ ( 𝐺 ↾ 𝐸 ) : 𝐸 ⟶ 𝐷 ) |
| 13 | 11 12 | sylibr | ⊢ ( 𝜑 → 𝑌 : 𝐸 ⟶ 𝐷 ) |
| 14 | 1 2 3 4 | fcoreslem3 | ⊢ ( 𝜑 → 𝑋 : 𝑃 –onto→ 𝐸 ) |
| 15 | fof | ⊢ ( 𝑋 : 𝑃 –onto→ 𝐸 → 𝑋 : 𝑃 ⟶ 𝐸 ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → 𝑋 : 𝑃 ⟶ 𝐸 ) |
| 17 | 1 2 3 4 5 6 | fcores | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑌 ∘ 𝑋 ) ) |
| 18 | 17 | eqcomd | ⊢ ( 𝜑 → ( 𝑌 ∘ 𝑋 ) = ( 𝐺 ∘ 𝐹 ) ) |
| 19 | foeq1 | ⊢ ( ( 𝑌 ∘ 𝑋 ) = ( 𝐺 ∘ 𝐹 ) → ( ( 𝑌 ∘ 𝑋 ) : 𝑃 –onto→ 𝐷 ↔ ( 𝐺 ∘ 𝐹 ) : 𝑃 –onto→ 𝐷 ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → ( ( 𝑌 ∘ 𝑋 ) : 𝑃 –onto→ 𝐷 ↔ ( 𝐺 ∘ 𝐹 ) : 𝑃 –onto→ 𝐷 ) ) |
| 21 | 7 20 | mpbird | ⊢ ( 𝜑 → ( 𝑌 ∘ 𝑋 ) : 𝑃 –onto→ 𝐷 ) |
| 22 | foco2 | ⊢ ( ( 𝑌 : 𝐸 ⟶ 𝐷 ∧ 𝑋 : 𝑃 ⟶ 𝐸 ∧ ( 𝑌 ∘ 𝑋 ) : 𝑃 –onto→ 𝐷 ) → 𝑌 : 𝐸 –onto→ 𝐷 ) | |
| 23 | 13 16 21 22 | syl3anc | ⊢ ( 𝜑 → 𝑌 : 𝐸 –onto→ 𝐷 ) |