This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the domain of a function G is a subset of the range of a function F , then the composition ( G o. F ) is surjective iff G is surjective. (Contributed by GL and AV, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funfocofob | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> ( ( G o. F ) : ( `' F " A ) -onto-> B <-> G : A -onto-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdmrn | |- ( Fun F <-> F : dom F --> ran F ) |
|
| 2 | 1 | biimpi | |- ( Fun F -> F : dom F --> ran F ) |
| 3 | 2 | 3ad2ant1 | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> F : dom F --> ran F ) |
| 4 | 3 | adantr | |- ( ( ( Fun F /\ G : A --> B /\ A C_ ran F ) /\ ( G o. F ) : ( `' F " A ) -onto-> B ) -> F : dom F --> ran F ) |
| 5 | eqid | |- ( ran F i^i A ) = ( ran F i^i A ) |
|
| 6 | eqid | |- ( `' F " A ) = ( `' F " A ) |
|
| 7 | eqid | |- ( F |` ( `' F " A ) ) = ( F |` ( `' F " A ) ) |
|
| 8 | simp2 | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> G : A --> B ) |
|
| 9 | 8 | adantr | |- ( ( ( Fun F /\ G : A --> B /\ A C_ ran F ) /\ ( G o. F ) : ( `' F " A ) -onto-> B ) -> G : A --> B ) |
| 10 | eqid | |- ( G |` ( ran F i^i A ) ) = ( G |` ( ran F i^i A ) ) |
|
| 11 | simpr | |- ( ( ( Fun F /\ G : A --> B /\ A C_ ran F ) /\ ( G o. F ) : ( `' F " A ) -onto-> B ) -> ( G o. F ) : ( `' F " A ) -onto-> B ) |
|
| 12 | 4 5 6 7 9 10 11 | fcoresfo | |- ( ( ( Fun F /\ G : A --> B /\ A C_ ran F ) /\ ( G o. F ) : ( `' F " A ) -onto-> B ) -> ( G |` ( ran F i^i A ) ) : ( ran F i^i A ) -onto-> B ) |
| 13 | 12 | ex | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> ( ( G o. F ) : ( `' F " A ) -onto-> B -> ( G |` ( ran F i^i A ) ) : ( ran F i^i A ) -onto-> B ) ) |
| 14 | sseqin2 | |- ( A C_ ran F <-> ( ran F i^i A ) = A ) |
|
| 15 | 14 | biimpi | |- ( A C_ ran F -> ( ran F i^i A ) = A ) |
| 16 | 15 | 3ad2ant3 | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> ( ran F i^i A ) = A ) |
| 17 | 8 | fdmd | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> dom G = A ) |
| 18 | 16 17 | eqtr4d | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> ( ran F i^i A ) = dom G ) |
| 19 | 18 | reseq2d | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> ( G |` ( ran F i^i A ) ) = ( G |` dom G ) ) |
| 20 | 8 | freld | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> Rel G ) |
| 21 | resdm | |- ( Rel G -> ( G |` dom G ) = G ) |
|
| 22 | 20 21 | syl | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> ( G |` dom G ) = G ) |
| 23 | 19 22 | eqtrd | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> ( G |` ( ran F i^i A ) ) = G ) |
| 24 | eqidd | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> B = B ) |
|
| 25 | 23 16 24 | foeq123d | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> ( ( G |` ( ran F i^i A ) ) : ( ran F i^i A ) -onto-> B <-> G : A -onto-> B ) ) |
| 26 | 13 25 | sylibd | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> ( ( G o. F ) : ( `' F " A ) -onto-> B -> G : A -onto-> B ) ) |
| 27 | simpr | |- ( ( ( Fun F /\ G : A --> B /\ A C_ ran F ) /\ G : A -onto-> B ) -> G : A -onto-> B ) |
|
| 28 | simpl1 | |- ( ( ( Fun F /\ G : A --> B /\ A C_ ran F ) /\ G : A -onto-> B ) -> Fun F ) |
|
| 29 | simpl3 | |- ( ( ( Fun F /\ G : A --> B /\ A C_ ran F ) /\ G : A -onto-> B ) -> A C_ ran F ) |
|
| 30 | focofo | |- ( ( G : A -onto-> B /\ Fun F /\ A C_ ran F ) -> ( G o. F ) : ( `' F " A ) -onto-> B ) |
|
| 31 | 27 28 29 30 | syl3anc | |- ( ( ( Fun F /\ G : A --> B /\ A C_ ran F ) /\ G : A -onto-> B ) -> ( G o. F ) : ( `' F " A ) -onto-> B ) |
| 32 | 31 | ex | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> ( G : A -onto-> B -> ( G o. F ) : ( `' F " A ) -onto-> B ) ) |
| 33 | 26 32 | impbid | |- ( ( Fun F /\ G : A --> B /\ A C_ ran F ) -> ( ( G o. F ) : ( `' F " A ) -onto-> B <-> G : A -onto-> B ) ) |