This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fundmge2nop (with the less restrictive requirement that ( G \ { (/) } ) needs to be a function instead of G ) is useful for proofs for extensible structures, see structn0fun . (Contributed by AV, 12-Oct-2020) (Revised by AV, 7-Jun-2021) (Proof shortened by AV, 15-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fundmge2nop0 | ⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝐺 ) ) → ¬ 𝐺 ∈ ( V × V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg | ⊢ ( 𝐺 ∈ V → dom 𝐺 ∈ V ) | |
| 2 | hashge2el2dif | ⊢ ( ( dom 𝐺 ∈ V ∧ 2 ≤ ( ♯ ‘ dom 𝐺 ) ) → ∃ 𝑎 ∈ dom 𝐺 ∃ 𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏 ) | |
| 3 | 2 | ex | ⊢ ( dom 𝐺 ∈ V → ( 2 ≤ ( ♯ ‘ dom 𝐺 ) → ∃ 𝑎 ∈ dom 𝐺 ∃ 𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏 ) ) |
| 4 | 1 3 | syl | ⊢ ( 𝐺 ∈ V → ( 2 ≤ ( ♯ ‘ dom 𝐺 ) → ∃ 𝑎 ∈ dom 𝐺 ∃ 𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏 ) ) |
| 5 | df-ne | ⊢ ( 𝑎 ≠ 𝑏 ↔ ¬ 𝑎 = 𝑏 ) | |
| 6 | elvv | ⊢ ( 𝐺 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝐺 = 〈 𝑥 , 𝑦 〉 ) | |
| 7 | difeq1 | ⊢ ( 𝐺 = 〈 𝑥 , 𝑦 〉 → ( 𝐺 ∖ { ∅ } ) = ( 〈 𝑥 , 𝑦 〉 ∖ { ∅ } ) ) | |
| 8 | 7 | funeqd | ⊢ ( 𝐺 = 〈 𝑥 , 𝑦 〉 → ( Fun ( 𝐺 ∖ { ∅ } ) ↔ Fun ( 〈 𝑥 , 𝑦 〉 ∖ { ∅ } ) ) ) |
| 9 | opwo0id | ⊢ 〈 𝑥 , 𝑦 〉 = ( 〈 𝑥 , 𝑦 〉 ∖ { ∅ } ) | |
| 10 | 9 | eqcomi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∖ { ∅ } ) = 〈 𝑥 , 𝑦 〉 |
| 11 | 10 | funeqi | ⊢ ( Fun ( 〈 𝑥 , 𝑦 〉 ∖ { ∅ } ) ↔ Fun 〈 𝑥 , 𝑦 〉 ) |
| 12 | dmeq | ⊢ ( 𝐺 = 〈 𝑥 , 𝑦 〉 → dom 𝐺 = dom 〈 𝑥 , 𝑦 〉 ) | |
| 13 | 12 | eleq2d | ⊢ ( 𝐺 = 〈 𝑥 , 𝑦 〉 → ( 𝑎 ∈ dom 𝐺 ↔ 𝑎 ∈ dom 〈 𝑥 , 𝑦 〉 ) ) |
| 14 | 12 | eleq2d | ⊢ ( 𝐺 = 〈 𝑥 , 𝑦 〉 → ( 𝑏 ∈ dom 𝐺 ↔ 𝑏 ∈ dom 〈 𝑥 , 𝑦 〉 ) ) |
| 15 | 13 14 | anbi12d | ⊢ ( 𝐺 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺 ) ↔ ( 𝑎 ∈ dom 〈 𝑥 , 𝑦 〉 ∧ 𝑏 ∈ dom 〈 𝑥 , 𝑦 〉 ) ) ) |
| 16 | eqid | ⊢ 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , 𝑦 〉 | |
| 17 | vex | ⊢ 𝑥 ∈ V | |
| 18 | vex | ⊢ 𝑦 ∈ V | |
| 19 | 16 17 18 | funopdmsn | ⊢ ( ( Fun 〈 𝑥 , 𝑦 〉 ∧ 𝑎 ∈ dom 〈 𝑥 , 𝑦 〉 ∧ 𝑏 ∈ dom 〈 𝑥 , 𝑦 〉 ) → 𝑎 = 𝑏 ) |
| 20 | 19 | 3expb | ⊢ ( ( Fun 〈 𝑥 , 𝑦 〉 ∧ ( 𝑎 ∈ dom 〈 𝑥 , 𝑦 〉 ∧ 𝑏 ∈ dom 〈 𝑥 , 𝑦 〉 ) ) → 𝑎 = 𝑏 ) |
| 21 | 20 | expcom | ⊢ ( ( 𝑎 ∈ dom 〈 𝑥 , 𝑦 〉 ∧ 𝑏 ∈ dom 〈 𝑥 , 𝑦 〉 ) → ( Fun 〈 𝑥 , 𝑦 〉 → 𝑎 = 𝑏 ) ) |
| 22 | 15 21 | biimtrdi | ⊢ ( 𝐺 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺 ) → ( Fun 〈 𝑥 , 𝑦 〉 → 𝑎 = 𝑏 ) ) ) |
| 23 | 22 | com23 | ⊢ ( 𝐺 = 〈 𝑥 , 𝑦 〉 → ( Fun 〈 𝑥 , 𝑦 〉 → ( ( 𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺 ) → 𝑎 = 𝑏 ) ) ) |
| 24 | 11 23 | biimtrid | ⊢ ( 𝐺 = 〈 𝑥 , 𝑦 〉 → ( Fun ( 〈 𝑥 , 𝑦 〉 ∖ { ∅ } ) → ( ( 𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺 ) → 𝑎 = 𝑏 ) ) ) |
| 25 | 8 24 | sylbid | ⊢ ( 𝐺 = 〈 𝑥 , 𝑦 〉 → ( Fun ( 𝐺 ∖ { ∅ } ) → ( ( 𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺 ) → 𝑎 = 𝑏 ) ) ) |
| 26 | 25 | impcomd | ⊢ ( 𝐺 = 〈 𝑥 , 𝑦 〉 → ( ( ( 𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺 ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ) → 𝑎 = 𝑏 ) ) |
| 27 | 26 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝐺 = 〈 𝑥 , 𝑦 〉 → ( ( ( 𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺 ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ) → 𝑎 = 𝑏 ) ) |
| 28 | 27 | com12 | ⊢ ( ( ( 𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺 ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ) → ( ∃ 𝑥 ∃ 𝑦 𝐺 = 〈 𝑥 , 𝑦 〉 → 𝑎 = 𝑏 ) ) |
| 29 | 6 28 | biimtrid | ⊢ ( ( ( 𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺 ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ) → ( 𝐺 ∈ ( V × V ) → 𝑎 = 𝑏 ) ) |
| 30 | 29 | con3d | ⊢ ( ( ( 𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺 ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ) → ( ¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ ( V × V ) ) ) |
| 31 | 30 | ex | ⊢ ( ( 𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺 ) → ( Fun ( 𝐺 ∖ { ∅ } ) → ( ¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ ( V × V ) ) ) ) |
| 32 | 31 | com23 | ⊢ ( ( 𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺 ) → ( ¬ 𝑎 = 𝑏 → ( Fun ( 𝐺 ∖ { ∅ } ) → ¬ 𝐺 ∈ ( V × V ) ) ) ) |
| 33 | 5 32 | biimtrid | ⊢ ( ( 𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺 ) → ( 𝑎 ≠ 𝑏 → ( Fun ( 𝐺 ∖ { ∅ } ) → ¬ 𝐺 ∈ ( V × V ) ) ) ) |
| 34 | 33 | rexlimivv | ⊢ ( ∃ 𝑎 ∈ dom 𝐺 ∃ 𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏 → ( Fun ( 𝐺 ∖ { ∅ } ) → ¬ 𝐺 ∈ ( V × V ) ) ) |
| 35 | 4 34 | syl6 | ⊢ ( 𝐺 ∈ V → ( 2 ≤ ( ♯ ‘ dom 𝐺 ) → ( Fun ( 𝐺 ∖ { ∅ } ) → ¬ 𝐺 ∈ ( V × V ) ) ) ) |
| 36 | 35 | com13 | ⊢ ( Fun ( 𝐺 ∖ { ∅ } ) → ( 2 ≤ ( ♯ ‘ dom 𝐺 ) → ( 𝐺 ∈ V → ¬ 𝐺 ∈ ( V × V ) ) ) ) |
| 37 | 36 | imp | ⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝐺 ) ) → ( 𝐺 ∈ V → ¬ 𝐺 ∈ ( V × V ) ) ) |
| 38 | prcnel | ⊢ ( ¬ 𝐺 ∈ V → ¬ 𝐺 ∈ ( V × V ) ) | |
| 39 | 37 38 | pm2.61d1 | ⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝐺 ) ) → ¬ 𝐺 ∈ ( V × V ) ) |