This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fundmge2nop (with the less restrictive requirement that ( G \ { (/) } ) needs to be a function instead of G ) is useful for proofs for extensible structures, see structn0fun . (Contributed by AV, 12-Oct-2020) (Revised by AV, 7-Jun-2021) (Proof shortened by AV, 15-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fundmge2nop0 | |- ( ( Fun ( G \ { (/) } ) /\ 2 <_ ( # ` dom G ) ) -> -. G e. ( _V X. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg | |- ( G e. _V -> dom G e. _V ) |
|
| 2 | hashge2el2dif | |- ( ( dom G e. _V /\ 2 <_ ( # ` dom G ) ) -> E. a e. dom G E. b e. dom G a =/= b ) |
|
| 3 | 2 | ex | |- ( dom G e. _V -> ( 2 <_ ( # ` dom G ) -> E. a e. dom G E. b e. dom G a =/= b ) ) |
| 4 | 1 3 | syl | |- ( G e. _V -> ( 2 <_ ( # ` dom G ) -> E. a e. dom G E. b e. dom G a =/= b ) ) |
| 5 | df-ne | |- ( a =/= b <-> -. a = b ) |
|
| 6 | elvv | |- ( G e. ( _V X. _V ) <-> E. x E. y G = <. x , y >. ) |
|
| 7 | difeq1 | |- ( G = <. x , y >. -> ( G \ { (/) } ) = ( <. x , y >. \ { (/) } ) ) |
|
| 8 | 7 | funeqd | |- ( G = <. x , y >. -> ( Fun ( G \ { (/) } ) <-> Fun ( <. x , y >. \ { (/) } ) ) ) |
| 9 | opwo0id | |- <. x , y >. = ( <. x , y >. \ { (/) } ) |
|
| 10 | 9 | eqcomi | |- ( <. x , y >. \ { (/) } ) = <. x , y >. |
| 11 | 10 | funeqi | |- ( Fun ( <. x , y >. \ { (/) } ) <-> Fun <. x , y >. ) |
| 12 | dmeq | |- ( G = <. x , y >. -> dom G = dom <. x , y >. ) |
|
| 13 | 12 | eleq2d | |- ( G = <. x , y >. -> ( a e. dom G <-> a e. dom <. x , y >. ) ) |
| 14 | 12 | eleq2d | |- ( G = <. x , y >. -> ( b e. dom G <-> b e. dom <. x , y >. ) ) |
| 15 | 13 14 | anbi12d | |- ( G = <. x , y >. -> ( ( a e. dom G /\ b e. dom G ) <-> ( a e. dom <. x , y >. /\ b e. dom <. x , y >. ) ) ) |
| 16 | eqid | |- <. x , y >. = <. x , y >. |
|
| 17 | vex | |- x e. _V |
|
| 18 | vex | |- y e. _V |
|
| 19 | 16 17 18 | funopdmsn | |- ( ( Fun <. x , y >. /\ a e. dom <. x , y >. /\ b e. dom <. x , y >. ) -> a = b ) |
| 20 | 19 | 3expb | |- ( ( Fun <. x , y >. /\ ( a e. dom <. x , y >. /\ b e. dom <. x , y >. ) ) -> a = b ) |
| 21 | 20 | expcom | |- ( ( a e. dom <. x , y >. /\ b e. dom <. x , y >. ) -> ( Fun <. x , y >. -> a = b ) ) |
| 22 | 15 21 | biimtrdi | |- ( G = <. x , y >. -> ( ( a e. dom G /\ b e. dom G ) -> ( Fun <. x , y >. -> a = b ) ) ) |
| 23 | 22 | com23 | |- ( G = <. x , y >. -> ( Fun <. x , y >. -> ( ( a e. dom G /\ b e. dom G ) -> a = b ) ) ) |
| 24 | 11 23 | biimtrid | |- ( G = <. x , y >. -> ( Fun ( <. x , y >. \ { (/) } ) -> ( ( a e. dom G /\ b e. dom G ) -> a = b ) ) ) |
| 25 | 8 24 | sylbid | |- ( G = <. x , y >. -> ( Fun ( G \ { (/) } ) -> ( ( a e. dom G /\ b e. dom G ) -> a = b ) ) ) |
| 26 | 25 | impcomd | |- ( G = <. x , y >. -> ( ( ( a e. dom G /\ b e. dom G ) /\ Fun ( G \ { (/) } ) ) -> a = b ) ) |
| 27 | 26 | exlimivv | |- ( E. x E. y G = <. x , y >. -> ( ( ( a e. dom G /\ b e. dom G ) /\ Fun ( G \ { (/) } ) ) -> a = b ) ) |
| 28 | 27 | com12 | |- ( ( ( a e. dom G /\ b e. dom G ) /\ Fun ( G \ { (/) } ) ) -> ( E. x E. y G = <. x , y >. -> a = b ) ) |
| 29 | 6 28 | biimtrid | |- ( ( ( a e. dom G /\ b e. dom G ) /\ Fun ( G \ { (/) } ) ) -> ( G e. ( _V X. _V ) -> a = b ) ) |
| 30 | 29 | con3d | |- ( ( ( a e. dom G /\ b e. dom G ) /\ Fun ( G \ { (/) } ) ) -> ( -. a = b -> -. G e. ( _V X. _V ) ) ) |
| 31 | 30 | ex | |- ( ( a e. dom G /\ b e. dom G ) -> ( Fun ( G \ { (/) } ) -> ( -. a = b -> -. G e. ( _V X. _V ) ) ) ) |
| 32 | 31 | com23 | |- ( ( a e. dom G /\ b e. dom G ) -> ( -. a = b -> ( Fun ( G \ { (/) } ) -> -. G e. ( _V X. _V ) ) ) ) |
| 33 | 5 32 | biimtrid | |- ( ( a e. dom G /\ b e. dom G ) -> ( a =/= b -> ( Fun ( G \ { (/) } ) -> -. G e. ( _V X. _V ) ) ) ) |
| 34 | 33 | rexlimivv | |- ( E. a e. dom G E. b e. dom G a =/= b -> ( Fun ( G \ { (/) } ) -> -. G e. ( _V X. _V ) ) ) |
| 35 | 4 34 | syl6 | |- ( G e. _V -> ( 2 <_ ( # ` dom G ) -> ( Fun ( G \ { (/) } ) -> -. G e. ( _V X. _V ) ) ) ) |
| 36 | 35 | com13 | |- ( Fun ( G \ { (/) } ) -> ( 2 <_ ( # ` dom G ) -> ( G e. _V -> -. G e. ( _V X. _V ) ) ) ) |
| 37 | 36 | imp | |- ( ( Fun ( G \ { (/) } ) /\ 2 <_ ( # ` dom G ) ) -> ( G e. _V -> -. G e. ( _V X. _V ) ) ) |
| 38 | prcnel | |- ( -. G e. _V -> -. G e. ( _V X. _V ) ) |
|
| 39 | 37 38 | pm2.61d1 | |- ( ( Fun ( G \ { (/) } ) /\ 2 <_ ( # ` dom G ) ) -> -. G e. ( _V X. _V ) ) |