This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finitely supported functions
fsuppsssuppgd
Metamath Proof Explorer
Description: If the support of a function is a subset of a finite support, it is
finite. Deduction associated with fsuppsssupp . (Contributed by SN , 6-Mar-2025)
Ref
Expression
Hypotheses
fsuppsssuppgd.g
⊢ φ → G ∈ V
fsuppsssuppgd.z
⊢ φ → Z ∈ W
fsuppsssuppgd.1
⊢ φ → Fun ⁡ G
fsuppsssuppgd.2
⊢ φ → finSupp O ⁡ F
fsuppsssuppgd.3
⊢ φ → G supp Z ⊆ F supp O
Assertion
fsuppsssuppgd
⊢ φ → finSupp Z ⁡ G
Proof
Step
Hyp
Ref
Expression
1
fsuppsssuppgd.g
⊢ φ → G ∈ V
2
fsuppsssuppgd.z
⊢ φ → Z ∈ W
3
fsuppsssuppgd.1
⊢ φ → Fun ⁡ G
4
fsuppsssuppgd.2
⊢ φ → finSupp O ⁡ F
5
fsuppsssuppgd.3
⊢ φ → G supp Z ⊆ F supp O
6
4
fsuppimpd
⊢ φ → F supp O ∈ Fin
7
suppssfifsupp
⊢ G ∈ V ∧ Fun ⁡ G ∧ Z ∈ W ∧ F supp O ∈ Fin ∧ G supp Z ⊆ F supp O → finSupp Z ⁡ G
8
1 3 2 6 5 7
syl32anc
⊢ φ → finSupp Z ⁡ G