This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a function over the nonnegative integers is finitely supported, then there is an upper bound for a finite set of sequential integers containing the support of the function. (Contributed by AV, 30-Sep-2019) (Proof shortened by AV, 6-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsuppmapnn0fz | ⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 finSupp 𝑍 → ∃ 𝑚 ∈ ℕ0 ( 𝐹 supp 𝑍 ) ⊆ ( 0 ... 𝑚 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppmapnn0ub | ⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 finSupp 𝑍 → ∃ 𝑚 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) ) | |
| 2 | simpllr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → 𝑍 ∈ 𝑉 ) | |
| 3 | simplll | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ) | |
| 4 | simplr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → 𝑚 ∈ ℕ0 ) | |
| 5 | simpr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) | |
| 6 | 2 3 4 5 | suppssfz | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → ( 𝐹 supp 𝑍 ) ⊆ ( 0 ... 𝑚 ) ) |
| 7 | 6 | ex | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → ( 𝐹 supp 𝑍 ) ⊆ ( 0 ... 𝑚 ) ) ) |
| 8 | 7 | reximdva | ⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → ( ∃ 𝑚 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → ∃ 𝑚 ∈ ℕ0 ( 𝐹 supp 𝑍 ) ⊆ ( 0 ... 𝑚 ) ) ) |
| 9 | 1 8 | syld | ⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 finSupp 𝑍 → ∃ 𝑚 ∈ ℕ0 ( 𝐹 supp 𝑍 ) ⊆ ( 0 ... 𝑚 ) ) ) |