This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate the nested sum of the product C ( j ) x. D ( k ) . (Contributed by NM, 13-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsum2mul.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsum2mul.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | ||
| fsum2mul.3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | ||
| fsum2mul.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐷 ∈ ℂ ) | ||
| Assertion | fsum2mul | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 ( 𝐶 · 𝐷 ) = ( Σ 𝑗 ∈ 𝐴 𝐶 · Σ 𝑘 ∈ 𝐵 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsum2mul.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsum2mul.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
| 3 | fsum2mul.3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | |
| 4 | fsum2mul.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐷 ∈ ℂ ) | |
| 5 | 2 4 | fsumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐵 𝐷 ∈ ℂ ) |
| 6 | 1 5 3 | fsummulc1 | ⊢ ( 𝜑 → ( Σ 𝑗 ∈ 𝐴 𝐶 · Σ 𝑘 ∈ 𝐵 𝐷 ) = Σ 𝑗 ∈ 𝐴 ( 𝐶 · Σ 𝑘 ∈ 𝐵 𝐷 ) ) |
| 7 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
| 8 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐷 ∈ ℂ ) |
| 9 | 7 3 8 | fsummulc2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐶 · Σ 𝑘 ∈ 𝐵 𝐷 ) = Σ 𝑘 ∈ 𝐵 ( 𝐶 · 𝐷 ) ) |
| 10 | 9 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 ( 𝐶 · Σ 𝑘 ∈ 𝐵 𝐷 ) = Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 ( 𝐶 · 𝐷 ) ) |
| 11 | 6 10 | eqtr2d | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 ( 𝐶 · 𝐷 ) = ( Σ 𝑗 ∈ 𝐴 𝐶 · Σ 𝑘 ∈ 𝐵 𝐷 ) ) |