This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum all of whose summands are integers is itself an integer (case where the summation set is the union of a finite set and a singleton). (Contributed by Alexander van der Vekens, 1-Sep-2018) (Revised by AV, 17-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsummsnunz | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1a | ⊢ ( 𝑘 = 𝑥 → 𝐵 = ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ) | |
| 2 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐵 | |
| 4 | 1 2 3 | cbvsum | ⊢ Σ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 = Σ 𝑥 ∈ ( 𝐴 ∪ { 𝑍 } ) ⦋ 𝑥 / 𝑘 ⦌ 𝐵 |
| 5 | snfi | ⊢ { 𝑍 } ∈ Fin | |
| 6 | 5 | a1i | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → { 𝑍 } ∈ Fin ) |
| 7 | unfi | ⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑍 } ∈ Fin ) → ( 𝐴 ∪ { 𝑍 } ) ∈ Fin ) | |
| 8 | 6 7 | syldan | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → ( 𝐴 ∪ { 𝑍 } ) ∈ Fin ) |
| 9 | rspcsbela | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝑍 } ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ ℤ ) | |
| 10 | 9 | expcom | ⊢ ( ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ → ( 𝑥 ∈ ( 𝐴 ∪ { 𝑍 } ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ ℤ ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → ( 𝑥 ∈ ( 𝐴 ∪ { 𝑍 } ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ ℤ ) ) |
| 12 | 11 | imp | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝑍 } ) ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
| 13 | 8 12 | fsumzcl | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → Σ 𝑥 ∈ ( 𝐴 ∪ { 𝑍 } ) ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
| 14 | 4 13 | eqeltrid | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝑍 } ) 𝐵 ∈ ℤ ) |