This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum of nonnegative numbers is greater than or equal to any one of its terms. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumge0.1 | ||
| fsumge0.2 | |||
| fsumge0.3 | |||
| fsumge1.4 | |||
| fsumge1.5 | |||
| Assertion | fsumge1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumge0.1 | ||
| 2 | fsumge0.2 | ||
| 3 | fsumge0.3 | ||
| 4 | fsumge1.4 | ||
| 5 | fsumge1.5 | ||
| 6 | 4 | eleq1d | |
| 7 | 2 | recnd | |
| 8 | 7 | ralrimiva | |
| 9 | 6 8 5 | rspcdva | |
| 10 | 4 | sumsn | |
| 11 | 5 9 10 | syl2anc | |
| 12 | 5 | snssd | |
| 13 | 1 2 3 12 | fsumless | |
| 14 | 11 13 | eqbrtrrd |