This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate a function with a singleton as domain and one variable. (Contributed by Thierry Arnoux, 12-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fsnex.1 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝐴 ) → ( 𝜓 ↔ 𝜑 ) ) | |
| Assertion | fsnex | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ↔ ∃ 𝑥 ∈ 𝐷 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsnex.1 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝐴 ) → ( 𝜓 ↔ 𝜑 ) ) | |
| 2 | fsn2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑓 : { 𝐴 } ⟶ 𝐷 ↔ ( ( 𝑓 ‘ 𝐴 ) ∈ 𝐷 ∧ 𝑓 = { 〈 𝐴 , ( 𝑓 ‘ 𝐴 ) 〉 } ) ) ) | |
| 3 | 2 | simprbda | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 : { 𝐴 } ⟶ 𝐷 ) → ( 𝑓 ‘ 𝐴 ) ∈ 𝐷 ) |
| 4 | 3 | adantrr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) → ( 𝑓 ‘ 𝐴 ) ∈ 𝐷 ) |
| 5 | 1 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) → ( 𝜓 ↔ 𝜑 ) ) |
| 6 | simprr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) → 𝜑 ) | |
| 7 | 4 5 6 | rspcedvd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) → ∃ 𝑥 ∈ 𝐷 𝜓 ) |
| 8 | 7 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) → ∃ 𝑥 ∈ 𝐷 𝜓 ) ) |
| 9 | 8 | exlimdv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) → ∃ 𝑥 ∈ 𝐷 𝜓 ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) → ∃ 𝑥 ∈ 𝐷 𝜓 ) |
| 11 | nfv | ⊢ Ⅎ 𝑥 𝐴 ∈ 𝑉 | |
| 12 | nfre1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐷 𝜓 | |
| 13 | 11 12 | nfan | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) |
| 14 | f1osng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ) → { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } –1-1-onto→ { 𝑥 } ) | |
| 15 | 14 | elvd | ⊢ ( 𝐴 ∈ 𝑉 → { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } –1-1-onto→ { 𝑥 } ) |
| 16 | 15 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } –1-1-onto→ { 𝑥 } ) |
| 17 | f1of | ⊢ ( { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } –1-1-onto→ { 𝑥 } → { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } ⟶ { 𝑥 } ) | |
| 18 | 16 17 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } ⟶ { 𝑥 } ) |
| 19 | simplr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → 𝑥 ∈ 𝐷 ) | |
| 20 | 19 | snssd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → { 𝑥 } ⊆ 𝐷 ) |
| 21 | 18 20 | fssd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } ⟶ 𝐷 ) |
| 22 | fvsng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ) → ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) = 𝑥 ) | |
| 23 | 22 | elvd | ⊢ ( 𝐴 ∈ 𝑉 → ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) = 𝑥 ) |
| 24 | 23 | eqcomd | ⊢ ( 𝐴 ∈ 𝑉 → 𝑥 = ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) ) |
| 25 | 24 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → 𝑥 = ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) ) |
| 26 | snex | ⊢ { 〈 𝐴 , 𝑥 〉 } ∈ V | |
| 27 | feq1 | ⊢ ( 𝑓 = { 〈 𝐴 , 𝑥 〉 } → ( 𝑓 : { 𝐴 } ⟶ 𝐷 ↔ { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } ⟶ 𝐷 ) ) | |
| 28 | fveq1 | ⊢ ( 𝑓 = { 〈 𝐴 , 𝑥 〉 } → ( 𝑓 ‘ 𝐴 ) = ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) ) | |
| 29 | 28 | eqeq2d | ⊢ ( 𝑓 = { 〈 𝐴 , 𝑥 〉 } → ( 𝑥 = ( 𝑓 ‘ 𝐴 ) ↔ 𝑥 = ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) ) ) |
| 30 | 27 29 | anbi12d | ⊢ ( 𝑓 = { 〈 𝐴 , 𝑥 〉 } → ( ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ↔ ( { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) ) ) ) |
| 31 | 26 30 | spcev | ⊢ ( ( { 〈 𝐴 , 𝑥 〉 } : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( { 〈 𝐴 , 𝑥 〉 } ‘ 𝐴 ) ) → ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) |
| 32 | 21 25 31 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) |
| 33 | simprl | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) → 𝑓 : { 𝐴 } ⟶ 𝐷 ) | |
| 34 | simpllr | ⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) ∧ 𝑓 : { 𝐴 } ⟶ 𝐷 ) → 𝜓 ) | |
| 35 | simplrr | ⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) ∧ 𝑓 : { 𝐴 } ⟶ 𝐷 ) → 𝑥 = ( 𝑓 ‘ 𝐴 ) ) | |
| 36 | 35 1 | syl | ⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) ∧ 𝑓 : { 𝐴 } ⟶ 𝐷 ) → ( 𝜓 ↔ 𝜑 ) ) |
| 37 | 34 36 | mpbid | ⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) ∧ 𝑓 : { 𝐴 } ⟶ 𝐷 ) → 𝜑 ) |
| 38 | 33 37 | mpdan | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) → 𝜑 ) |
| 39 | 33 38 | jca | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) ∧ ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) ) → ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) |
| 40 | 39 | ex | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → ( ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) → ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) ) |
| 41 | 40 | eximdv | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → ( ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝑥 = ( 𝑓 ‘ 𝐴 ) ) → ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) ) |
| 42 | 32 41 | mpd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) ∧ 𝑥 ∈ 𝐷 ) ∧ 𝜓 ) → ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) |
| 43 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) → ∃ 𝑥 ∈ 𝐷 𝜓 ) | |
| 44 | 13 42 43 | r19.29af | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐷 𝜓 ) → ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ) |
| 45 | 10 44 | impbida | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷 ∧ 𝜑 ) ↔ ∃ 𝑥 ∈ 𝐷 𝜓 ) ) |