This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The structure replacement function is a function. (Contributed by SO, 12-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsets | |- ( ( ( F e. V /\ F : A --> B ) /\ X e. A /\ Y e. B ) -> ( F sSet <. X , Y >. ) : A --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss | |- ( A \ { X } ) C_ A |
|
| 2 | fssres | |- ( ( F : A --> B /\ ( A \ { X } ) C_ A ) -> ( F |` ( A \ { X } ) ) : ( A \ { X } ) --> B ) |
|
| 3 | 1 2 | mpan2 | |- ( F : A --> B -> ( F |` ( A \ { X } ) ) : ( A \ { X } ) --> B ) |
| 4 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 5 | fnresdm | |- ( F Fn A -> ( F |` A ) = F ) |
|
| 6 | 4 5 | syl | |- ( F : A --> B -> ( F |` A ) = F ) |
| 7 | 6 | reseq1d | |- ( F : A --> B -> ( ( F |` A ) |` ( _V \ { X } ) ) = ( F |` ( _V \ { X } ) ) ) |
| 8 | resres | |- ( ( F |` A ) |` ( _V \ { X } ) ) = ( F |` ( A i^i ( _V \ { X } ) ) ) |
|
| 9 | invdif | |- ( A i^i ( _V \ { X } ) ) = ( A \ { X } ) |
|
| 10 | 9 | reseq2i | |- ( F |` ( A i^i ( _V \ { X } ) ) ) = ( F |` ( A \ { X } ) ) |
| 11 | 8 10 | eqtri | |- ( ( F |` A ) |` ( _V \ { X } ) ) = ( F |` ( A \ { X } ) ) |
| 12 | 7 11 | eqtr3di | |- ( F : A --> B -> ( F |` ( _V \ { X } ) ) = ( F |` ( A \ { X } ) ) ) |
| 13 | 12 | feq1d | |- ( F : A --> B -> ( ( F |` ( _V \ { X } ) ) : ( A \ { X } ) --> B <-> ( F |` ( A \ { X } ) ) : ( A \ { X } ) --> B ) ) |
| 14 | 3 13 | mpbird | |- ( F : A --> B -> ( F |` ( _V \ { X } ) ) : ( A \ { X } ) --> B ) |
| 15 | 14 | adantl | |- ( ( F e. V /\ F : A --> B ) -> ( F |` ( _V \ { X } ) ) : ( A \ { X } ) --> B ) |
| 16 | fsnunf2 | |- ( ( ( F |` ( _V \ { X } ) ) : ( A \ { X } ) --> B /\ X e. A /\ Y e. B ) -> ( ( F |` ( _V \ { X } ) ) u. { <. X , Y >. } ) : A --> B ) |
|
| 17 | 15 16 | syl3an1 | |- ( ( ( F e. V /\ F : A --> B ) /\ X e. A /\ Y e. B ) -> ( ( F |` ( _V \ { X } ) ) u. { <. X , Y >. } ) : A --> B ) |
| 18 | simp1l | |- ( ( ( F e. V /\ F : A --> B ) /\ X e. A /\ Y e. B ) -> F e. V ) |
|
| 19 | simp3 | |- ( ( ( F e. V /\ F : A --> B ) /\ X e. A /\ Y e. B ) -> Y e. B ) |
|
| 20 | setsval | |- ( ( F e. V /\ Y e. B ) -> ( F sSet <. X , Y >. ) = ( ( F |` ( _V \ { X } ) ) u. { <. X , Y >. } ) ) |
|
| 21 | 20 | feq1d | |- ( ( F e. V /\ Y e. B ) -> ( ( F sSet <. X , Y >. ) : A --> B <-> ( ( F |` ( _V \ { X } ) ) u. { <. X , Y >. } ) : A --> B ) ) |
| 22 | 18 19 21 | syl2anc | |- ( ( ( F e. V /\ F : A --> B ) /\ X e. A /\ Y e. B ) -> ( ( F sSet <. X , Y >. ) : A --> B <-> ( ( F |` ( _V \ { X } ) ) u. { <. X , Y >. } ) : A --> B ) ) |
| 23 | 17 22 | mpbird | |- ( ( ( F e. V /\ F : A --> B ) /\ X e. A /\ Y e. B ) -> ( F sSet <. X , Y >. ) : A --> B ) |