This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adjoining a point to a punctured function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsnunf2 | ⊢ ( ( 𝐹 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇 ) → ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) : 𝑆 ⟶ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐹 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇 ) → 𝐹 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝑇 ) | |
| 2 | simp2 | ⊢ ( ( 𝐹 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇 ) → 𝑋 ∈ 𝑆 ) | |
| 3 | neldifsnd | ⊢ ( ( 𝐹 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇 ) → ¬ 𝑋 ∈ ( 𝑆 ∖ { 𝑋 } ) ) | |
| 4 | simp3 | ⊢ ( ( 𝐹 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇 ) → 𝑌 ∈ 𝑇 ) | |
| 5 | fsnunf | ⊢ ( ( 𝐹 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝑇 ∧ ( 𝑋 ∈ 𝑆 ∧ ¬ 𝑋 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ∧ 𝑌 ∈ 𝑇 ) → ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( ( 𝑆 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ⟶ 𝑇 ) | |
| 6 | 1 2 3 4 5 | syl121anc | ⊢ ( ( 𝐹 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇 ) → ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( ( 𝑆 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ⟶ 𝑇 ) |
| 7 | difsnid | ⊢ ( 𝑋 ∈ 𝑆 → ( ( 𝑆 ∖ { 𝑋 } ) ∪ { 𝑋 } ) = 𝑆 ) | |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐹 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇 ) → ( ( 𝑆 ∖ { 𝑋 } ) ∪ { 𝑋 } ) = 𝑆 ) |
| 9 | 8 | feq2d | ⊢ ( ( 𝐹 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇 ) → ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) : ( ( 𝑆 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ⟶ 𝑇 ↔ ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) : 𝑆 ⟶ 𝑇 ) ) |
| 10 | 6 9 | mpbid | ⊢ ( ( 𝐹 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇 ) → ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) : 𝑆 ⟶ 𝑇 ) |