This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The values of a finite real sequence have an upper bound. (Contributed by NM, 19-Sep-2005) (Proof shortened by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsequb | ⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfi | ⊢ ( 𝑀 ... 𝑁 ) ∈ Fin | |
| 2 | fimaxre3 | ⊢ ( ( ( 𝑀 ... 𝑁 ) ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) | |
| 3 | 1 2 | mpan | ⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) |
| 4 | r19.26 | ⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) ↔ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) ) | |
| 5 | peano2re | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 + 1 ) ∈ ℝ ) | |
| 6 | ltp1 | ⊢ ( 𝑦 ∈ ℝ → 𝑦 < ( 𝑦 + 1 ) ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → 𝑦 < ( 𝑦 + 1 ) ) |
| 8 | simpr | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 9 | simpl | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 10 | 5 | adantr | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 11 | lelttr | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ∧ 𝑦 < ( 𝑦 + 1 ) ) → ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) ) | |
| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ∧ 𝑦 < ( 𝑦 + 1 ) ) → ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) ) |
| 13 | 7 12 | mpan2d | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 → ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) ) |
| 14 | 13 | expimpd | ⊢ ( 𝑦 ∈ ℝ → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) → ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) ) |
| 15 | 14 | ralimdv | ⊢ ( 𝑦 ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) ) |
| 16 | brralrspcev | ⊢ ( ( ( 𝑦 + 1 ) ∈ ℝ ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) | |
| 17 | 5 15 16 | syl6an | ⊢ ( 𝑦 ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) ) |
| 18 | 4 17 | biimtrrid | ⊢ ( 𝑦 ∈ ℝ → ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) ) |
| 19 | 18 | expd | ⊢ ( 𝑦 ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) ) ) |
| 20 | 19 | impcom | ⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) ) |
| 21 | 20 | rexlimdva | ⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ( ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) ) |
| 22 | 3 21 | mpd | ⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) |