This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The values of a finite real sequence have an upper bound. (Contributed by NM, 20-Sep-2005) (Proof shortened by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsequb2 | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfi | ⊢ ( 𝑀 ... 𝑁 ) ∈ Fin | |
| 2 | ffvelcdm | ⊢ ( ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 3 | 2 | ralrimiva | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 4 | fimaxre3 | ⊢ ( ( ( 𝑀 ... 𝑁 ) ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) | |
| 5 | 1 3 4 | sylancr | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
| 6 | ffn | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → 𝐹 Fn ( 𝑀 ... 𝑁 ) ) | |
| 7 | breq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑘 ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) | |
| 8 | 7 | ralrn | ⊢ ( 𝐹 Fn ( 𝑀 ... 𝑁 ) → ( ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 9 | 6 8 | syl | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ( ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 10 | 9 | rexbidv | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 11 | 5 10 | mpbird | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |