This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The values of a finite real sequence are bounded by their supremum. (Contributed by NM, 20-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fseqsupubi | |- ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> ( F ` K ) <_ sup ( ran F , RR , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn | |- ( F : ( M ... N ) --> RR -> ran F C_ RR ) |
|
| 2 | 1 | adantl | |- ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> ran F C_ RR ) |
| 3 | fdm | |- ( F : ( M ... N ) --> RR -> dom F = ( M ... N ) ) |
|
| 4 | ne0i | |- ( K e. ( M ... N ) -> ( M ... N ) =/= (/) ) |
|
| 5 | dm0rn0 | |- ( dom F = (/) <-> ran F = (/) ) |
|
| 6 | eqeq1 | |- ( dom F = ( M ... N ) -> ( dom F = (/) <-> ( M ... N ) = (/) ) ) |
|
| 7 | 6 | biimpd | |- ( dom F = ( M ... N ) -> ( dom F = (/) -> ( M ... N ) = (/) ) ) |
| 8 | 5 7 | biimtrrid | |- ( dom F = ( M ... N ) -> ( ran F = (/) -> ( M ... N ) = (/) ) ) |
| 9 | 8 | necon3d | |- ( dom F = ( M ... N ) -> ( ( M ... N ) =/= (/) -> ran F =/= (/) ) ) |
| 10 | 4 9 | mpan9 | |- ( ( K e. ( M ... N ) /\ dom F = ( M ... N ) ) -> ran F =/= (/) ) |
| 11 | 3 10 | sylan2 | |- ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> ran F =/= (/) ) |
| 12 | fsequb2 | |- ( F : ( M ... N ) --> RR -> E. x e. RR A. y e. ran F y <_ x ) |
|
| 13 | 12 | adantl | |- ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> E. x e. RR A. y e. ran F y <_ x ) |
| 14 | ffn | |- ( F : ( M ... N ) --> RR -> F Fn ( M ... N ) ) |
|
| 15 | fnfvelrn | |- ( ( F Fn ( M ... N ) /\ K e. ( M ... N ) ) -> ( F ` K ) e. ran F ) |
|
| 16 | 15 | ancoms | |- ( ( K e. ( M ... N ) /\ F Fn ( M ... N ) ) -> ( F ` K ) e. ran F ) |
| 17 | 14 16 | sylan2 | |- ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> ( F ` K ) e. ran F ) |
| 18 | 2 11 13 17 | suprubd | |- ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> ( F ` K ) <_ sup ( ran F , RR , < ) ) |