This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-Founded Induction Schema (variant). If a property passes from all elements less than y of a well-founded set-like partial order class A to y itself (induction hypothesis), then the property holds for all elements of A . (Contributed by Scott Fenton, 11-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frpoinsg.1 | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ y e. A ) -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) |
|
| Assertion | frpoinsg | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> A. y e. A ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frpoinsg.1 | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ y e. A ) -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) |
|
| 2 | dfss3 | |- ( Pred ( R , A , w ) C_ { y e. A | ph } <-> A. z e. Pred ( R , A , w ) z e. { y e. A | ph } ) |
|
| 3 | nfcv | |- F/_ y A |
|
| 4 | 3 | elrabsf | |- ( z e. { y e. A | ph } <-> ( z e. A /\ [. z / y ]. ph ) ) |
| 5 | 4 | simprbi | |- ( z e. { y e. A | ph } -> [. z / y ]. ph ) |
| 6 | 5 | ralimi | |- ( A. z e. Pred ( R , A , w ) z e. { y e. A | ph } -> A. z e. Pred ( R , A , w ) [. z / y ]. ph ) |
| 7 | 2 6 | sylbi | |- ( Pred ( R , A , w ) C_ { y e. A | ph } -> A. z e. Pred ( R , A , w ) [. z / y ]. ph ) |
| 8 | nfv | |- F/ y ( ( R Fr A /\ R Po A /\ R Se A ) /\ w e. A ) |
|
| 9 | nfcv | |- F/_ y Pred ( R , A , w ) |
|
| 10 | nfsbc1v | |- F/ y [. z / y ]. ph |
|
| 11 | 9 10 | nfralw | |- F/ y A. z e. Pred ( R , A , w ) [. z / y ]. ph |
| 12 | nfsbc1v | |- F/ y [. w / y ]. ph |
|
| 13 | 11 12 | nfim | |- F/ y ( A. z e. Pred ( R , A , w ) [. z / y ]. ph -> [. w / y ]. ph ) |
| 14 | 8 13 | nfim | |- F/ y ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ w e. A ) -> ( A. z e. Pred ( R , A , w ) [. z / y ]. ph -> [. w / y ]. ph ) ) |
| 15 | eleq1w | |- ( y = w -> ( y e. A <-> w e. A ) ) |
|
| 16 | 15 | anbi2d | |- ( y = w -> ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ y e. A ) <-> ( ( R Fr A /\ R Po A /\ R Se A ) /\ w e. A ) ) ) |
| 17 | predeq3 | |- ( y = w -> Pred ( R , A , y ) = Pred ( R , A , w ) ) |
|
| 18 | 17 | raleqdv | |- ( y = w -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph <-> A. z e. Pred ( R , A , w ) [. z / y ]. ph ) ) |
| 19 | sbceq1a | |- ( y = w -> ( ph <-> [. w / y ]. ph ) ) |
|
| 20 | 18 19 | imbi12d | |- ( y = w -> ( ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) <-> ( A. z e. Pred ( R , A , w ) [. z / y ]. ph -> [. w / y ]. ph ) ) ) |
| 21 | 16 20 | imbi12d | |- ( y = w -> ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ y e. A ) -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) <-> ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ w e. A ) -> ( A. z e. Pred ( R , A , w ) [. z / y ]. ph -> [. w / y ]. ph ) ) ) ) |
| 22 | 14 21 1 | chvarfv | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ w e. A ) -> ( A. z e. Pred ( R , A , w ) [. z / y ]. ph -> [. w / y ]. ph ) ) |
| 23 | 7 22 | syl5 | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ w e. A ) -> ( Pred ( R , A , w ) C_ { y e. A | ph } -> [. w / y ]. ph ) ) |
| 24 | simpr | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ w e. A ) -> w e. A ) |
|
| 25 | 23 24 | jctild | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ w e. A ) -> ( Pred ( R , A , w ) C_ { y e. A | ph } -> ( w e. A /\ [. w / y ]. ph ) ) ) |
| 26 | 3 | elrabsf | |- ( w e. { y e. A | ph } <-> ( w e. A /\ [. w / y ]. ph ) ) |
| 27 | 25 26 | imbitrrdi | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ w e. A ) -> ( Pred ( R , A , w ) C_ { y e. A | ph } -> w e. { y e. A | ph } ) ) |
| 28 | 27 | ralrimiva | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> A. w e. A ( Pred ( R , A , w ) C_ { y e. A | ph } -> w e. { y e. A | ph } ) ) |
| 29 | ssrab2 | |- { y e. A | ph } C_ A |
|
| 30 | 28 29 | jctil | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> ( { y e. A | ph } C_ A /\ A. w e. A ( Pred ( R , A , w ) C_ { y e. A | ph } -> w e. { y e. A | ph } ) ) ) |
| 31 | frpoind | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( { y e. A | ph } C_ A /\ A. w e. A ( Pred ( R , A , w ) C_ { y e. A | ph } -> w e. { y e. A | ph } ) ) ) -> A = { y e. A | ph } ) |
|
| 32 | 30 31 | mpdan | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> A = { y e. A | ph } ) |
| 33 | rabid2 | |- ( A = { y e. A | ph } <-> A. y e. A ph ) |
|
| 34 | 32 33 | sylib | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> A. y e. A ph ) |