This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid operation of a free monoid. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016) (Proof shortened by AV, 6-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frmdbas.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| frmdbas.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | ||
| frmdplusg.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| Assertion | frmdplusg | ⊢ + = ( ++ ↾ ( 𝐵 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdbas.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| 2 | frmdbas.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 3 | frmdplusg.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 4 | 1 2 | frmdbas | ⊢ ( 𝐼 ∈ V → 𝐵 = Word 𝐼 ) |
| 5 | eqid | ⊢ ( ++ ↾ ( 𝐵 × 𝐵 ) ) = ( ++ ↾ ( 𝐵 × 𝐵 ) ) | |
| 6 | 1 4 5 | frmdval | ⊢ ( 𝐼 ∈ V → 𝑀 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ++ ↾ ( 𝐵 × 𝐵 ) ) 〉 } ) |
| 7 | 6 | fveq2d | ⊢ ( 𝐼 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ++ ↾ ( 𝐵 × 𝐵 ) ) 〉 } ) ) |
| 8 | 3 7 | eqtrid | ⊢ ( 𝐼 ∈ V → + = ( +g ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ++ ↾ ( 𝐵 × 𝐵 ) ) 〉 } ) ) |
| 9 | wrdexg | ⊢ ( 𝐼 ∈ V → Word 𝐼 ∈ V ) | |
| 10 | ccatfn | ⊢ ++ Fn ( V × V ) | |
| 11 | xpss | ⊢ ( 𝐵 × 𝐵 ) ⊆ ( V × V ) | |
| 12 | fnssres | ⊢ ( ( ++ Fn ( V × V ) ∧ ( 𝐵 × 𝐵 ) ⊆ ( V × V ) ) → ( ++ ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ) | |
| 13 | 10 11 12 | mp2an | ⊢ ( ++ ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) |
| 14 | ovres | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( ++ ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) = ( 𝑥 ++ 𝑦 ) ) | |
| 15 | 1 2 | frmdelbas | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ Word 𝐼 ) |
| 16 | 1 2 | frmdelbas | ⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ Word 𝐼 ) |
| 17 | ccatcl | ⊢ ( ( 𝑥 ∈ Word 𝐼 ∧ 𝑦 ∈ Word 𝐼 ) → ( 𝑥 ++ 𝑦 ) ∈ Word 𝐼 ) | |
| 18 | 15 16 17 | syl2an | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ++ 𝑦 ) ∈ Word 𝐼 ) |
| 19 | 14 18 | eqeltrd | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( ++ ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) ∈ Word 𝐼 ) |
| 20 | 19 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ++ ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) ∈ Word 𝐼 |
| 21 | ffnov | ⊢ ( ( ++ ↾ ( 𝐵 × 𝐵 ) ) : ( 𝐵 × 𝐵 ) ⟶ Word 𝐼 ↔ ( ( ++ ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ++ ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) ∈ Word 𝐼 ) ) | |
| 22 | 13 20 21 | mpbir2an | ⊢ ( ++ ↾ ( 𝐵 × 𝐵 ) ) : ( 𝐵 × 𝐵 ) ⟶ Word 𝐼 |
| 23 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 24 | 23 23 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 25 | fex2 | ⊢ ( ( ( ++ ↾ ( 𝐵 × 𝐵 ) ) : ( 𝐵 × 𝐵 ) ⟶ Word 𝐼 ∧ ( 𝐵 × 𝐵 ) ∈ V ∧ Word 𝐼 ∈ V ) → ( ++ ↾ ( 𝐵 × 𝐵 ) ) ∈ V ) | |
| 26 | 22 24 25 | mp3an12 | ⊢ ( Word 𝐼 ∈ V → ( ++ ↾ ( 𝐵 × 𝐵 ) ) ∈ V ) |
| 27 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ++ ↾ ( 𝐵 × 𝐵 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ++ ↾ ( 𝐵 × 𝐵 ) ) 〉 } | |
| 28 | 27 | grpplusg | ⊢ ( ( ++ ↾ ( 𝐵 × 𝐵 ) ) ∈ V → ( ++ ↾ ( 𝐵 × 𝐵 ) ) = ( +g ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ++ ↾ ( 𝐵 × 𝐵 ) ) 〉 } ) ) |
| 29 | 9 26 28 | 3syl | ⊢ ( 𝐼 ∈ V → ( ++ ↾ ( 𝐵 × 𝐵 ) ) = ( +g ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( ++ ↾ ( 𝐵 × 𝐵 ) ) 〉 } ) ) |
| 30 | 8 29 | eqtr4d | ⊢ ( 𝐼 ∈ V → + = ( ++ ↾ ( 𝐵 × 𝐵 ) ) ) |
| 31 | fvprc | ⊢ ( ¬ 𝐼 ∈ V → ( freeMnd ‘ 𝐼 ) = ∅ ) | |
| 32 | 1 31 | eqtrid | ⊢ ( ¬ 𝐼 ∈ V → 𝑀 = ∅ ) |
| 33 | 32 | fveq2d | ⊢ ( ¬ 𝐼 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ ∅ ) ) |
| 34 | 3 33 | eqtrid | ⊢ ( ¬ 𝐼 ∈ V → + = ( +g ‘ ∅ ) ) |
| 35 | res0 | ⊢ ( ++ ↾ ∅ ) = ∅ | |
| 36 | plusgid | ⊢ +g = Slot ( +g ‘ ndx ) | |
| 37 | 36 | str0 | ⊢ ∅ = ( +g ‘ ∅ ) |
| 38 | 35 37 | eqtr2i | ⊢ ( +g ‘ ∅ ) = ( ++ ↾ ∅ ) |
| 39 | 34 38 | eqtrdi | ⊢ ( ¬ 𝐼 ∈ V → + = ( ++ ↾ ∅ ) ) |
| 40 | 32 | fveq2d | ⊢ ( ¬ 𝐼 ∈ V → ( Base ‘ 𝑀 ) = ( Base ‘ ∅ ) ) |
| 41 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 42 | 40 2 41 | 3eqtr4g | ⊢ ( ¬ 𝐼 ∈ V → 𝐵 = ∅ ) |
| 43 | 42 | xpeq2d | ⊢ ( ¬ 𝐼 ∈ V → ( 𝐵 × 𝐵 ) = ( 𝐵 × ∅ ) ) |
| 44 | xp0 | ⊢ ( 𝐵 × ∅ ) = ∅ | |
| 45 | 43 44 | eqtrdi | ⊢ ( ¬ 𝐼 ∈ V → ( 𝐵 × 𝐵 ) = ∅ ) |
| 46 | 45 | reseq2d | ⊢ ( ¬ 𝐼 ∈ V → ( ++ ↾ ( 𝐵 × 𝐵 ) ) = ( ++ ↾ ∅ ) ) |
| 47 | 39 46 | eqtr4d | ⊢ ( ¬ 𝐼 ∈ V → + = ( ++ ↾ ( 𝐵 × 𝐵 ) ) ) |
| 48 | 30 47 | pm2.61i | ⊢ + = ( ++ ↾ ( 𝐵 × 𝐵 ) ) |