This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid operation of a free monoid. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016) (Proof shortened by AV, 6-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frmdbas.m | |- M = ( freeMnd ` I ) |
|
| frmdbas.b | |- B = ( Base ` M ) |
||
| frmdplusg.p | |- .+ = ( +g ` M ) |
||
| Assertion | frmdplusg | |- .+ = ( ++ |` ( B X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdbas.m | |- M = ( freeMnd ` I ) |
|
| 2 | frmdbas.b | |- B = ( Base ` M ) |
|
| 3 | frmdplusg.p | |- .+ = ( +g ` M ) |
|
| 4 | 1 2 | frmdbas | |- ( I e. _V -> B = Word I ) |
| 5 | eqid | |- ( ++ |` ( B X. B ) ) = ( ++ |` ( B X. B ) ) |
|
| 6 | 1 4 5 | frmdval | |- ( I e. _V -> M = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( ++ |` ( B X. B ) ) >. } ) |
| 7 | 6 | fveq2d | |- ( I e. _V -> ( +g ` M ) = ( +g ` { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( ++ |` ( B X. B ) ) >. } ) ) |
| 8 | 3 7 | eqtrid | |- ( I e. _V -> .+ = ( +g ` { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( ++ |` ( B X. B ) ) >. } ) ) |
| 9 | wrdexg | |- ( I e. _V -> Word I e. _V ) |
|
| 10 | ccatfn | |- ++ Fn ( _V X. _V ) |
|
| 11 | xpss | |- ( B X. B ) C_ ( _V X. _V ) |
|
| 12 | fnssres | |- ( ( ++ Fn ( _V X. _V ) /\ ( B X. B ) C_ ( _V X. _V ) ) -> ( ++ |` ( B X. B ) ) Fn ( B X. B ) ) |
|
| 13 | 10 11 12 | mp2an | |- ( ++ |` ( B X. B ) ) Fn ( B X. B ) |
| 14 | ovres | |- ( ( x e. B /\ y e. B ) -> ( x ( ++ |` ( B X. B ) ) y ) = ( x ++ y ) ) |
|
| 15 | 1 2 | frmdelbas | |- ( x e. B -> x e. Word I ) |
| 16 | 1 2 | frmdelbas | |- ( y e. B -> y e. Word I ) |
| 17 | ccatcl | |- ( ( x e. Word I /\ y e. Word I ) -> ( x ++ y ) e. Word I ) |
|
| 18 | 15 16 17 | syl2an | |- ( ( x e. B /\ y e. B ) -> ( x ++ y ) e. Word I ) |
| 19 | 14 18 | eqeltrd | |- ( ( x e. B /\ y e. B ) -> ( x ( ++ |` ( B X. B ) ) y ) e. Word I ) |
| 20 | 19 | rgen2 | |- A. x e. B A. y e. B ( x ( ++ |` ( B X. B ) ) y ) e. Word I |
| 21 | ffnov | |- ( ( ++ |` ( B X. B ) ) : ( B X. B ) --> Word I <-> ( ( ++ |` ( B X. B ) ) Fn ( B X. B ) /\ A. x e. B A. y e. B ( x ( ++ |` ( B X. B ) ) y ) e. Word I ) ) |
|
| 22 | 13 20 21 | mpbir2an | |- ( ++ |` ( B X. B ) ) : ( B X. B ) --> Word I |
| 23 | 2 | fvexi | |- B e. _V |
| 24 | 23 23 | xpex | |- ( B X. B ) e. _V |
| 25 | fex2 | |- ( ( ( ++ |` ( B X. B ) ) : ( B X. B ) --> Word I /\ ( B X. B ) e. _V /\ Word I e. _V ) -> ( ++ |` ( B X. B ) ) e. _V ) |
|
| 26 | 22 24 25 | mp3an12 | |- ( Word I e. _V -> ( ++ |` ( B X. B ) ) e. _V ) |
| 27 | eqid | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( ++ |` ( B X. B ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( ++ |` ( B X. B ) ) >. } |
|
| 28 | 27 | grpplusg | |- ( ( ++ |` ( B X. B ) ) e. _V -> ( ++ |` ( B X. B ) ) = ( +g ` { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( ++ |` ( B X. B ) ) >. } ) ) |
| 29 | 9 26 28 | 3syl | |- ( I e. _V -> ( ++ |` ( B X. B ) ) = ( +g ` { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( ++ |` ( B X. B ) ) >. } ) ) |
| 30 | 8 29 | eqtr4d | |- ( I e. _V -> .+ = ( ++ |` ( B X. B ) ) ) |
| 31 | fvprc | |- ( -. I e. _V -> ( freeMnd ` I ) = (/) ) |
|
| 32 | 1 31 | eqtrid | |- ( -. I e. _V -> M = (/) ) |
| 33 | 32 | fveq2d | |- ( -. I e. _V -> ( +g ` M ) = ( +g ` (/) ) ) |
| 34 | 3 33 | eqtrid | |- ( -. I e. _V -> .+ = ( +g ` (/) ) ) |
| 35 | res0 | |- ( ++ |` (/) ) = (/) |
|
| 36 | plusgid | |- +g = Slot ( +g ` ndx ) |
|
| 37 | 36 | str0 | |- (/) = ( +g ` (/) ) |
| 38 | 35 37 | eqtr2i | |- ( +g ` (/) ) = ( ++ |` (/) ) |
| 39 | 34 38 | eqtrdi | |- ( -. I e. _V -> .+ = ( ++ |` (/) ) ) |
| 40 | 32 | fveq2d | |- ( -. I e. _V -> ( Base ` M ) = ( Base ` (/) ) ) |
| 41 | base0 | |- (/) = ( Base ` (/) ) |
|
| 42 | 40 2 41 | 3eqtr4g | |- ( -. I e. _V -> B = (/) ) |
| 43 | 42 | xpeq2d | |- ( -. I e. _V -> ( B X. B ) = ( B X. (/) ) ) |
| 44 | xp0 | |- ( B X. (/) ) = (/) |
|
| 45 | 43 44 | eqtrdi | |- ( -. I e. _V -> ( B X. B ) = (/) ) |
| 46 | 45 | reseq2d | |- ( -. I e. _V -> ( ++ |` ( B X. B ) ) = ( ++ |` (/) ) ) |
| 47 | 39 46 | eqtr4d | |- ( -. I e. _V -> .+ = ( ++ |` ( B X. B ) ) ) |
| 48 | 30 47 | pm2.61i | |- .+ = ( ++ |` ( B X. B ) ) |