This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Stefan O'Rear, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmplusgval.y | |- Y = ( R freeLMod I ) |
|
| frlmplusgval.b | |- B = ( Base ` Y ) |
||
| frlmplusgval.r | |- ( ph -> R e. V ) |
||
| frlmplusgval.i | |- ( ph -> I e. W ) |
||
| frlmplusgval.f | |- ( ph -> F e. B ) |
||
| frlmplusgval.g | |- ( ph -> G e. B ) |
||
| frlmplusgval.a | |- .+ = ( +g ` R ) |
||
| frlmplusgval.p | |- .+b = ( +g ` Y ) |
||
| Assertion | frlmplusgval | |- ( ph -> ( F .+b G ) = ( F oF .+ G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmplusgval.y | |- Y = ( R freeLMod I ) |
|
| 2 | frlmplusgval.b | |- B = ( Base ` Y ) |
|
| 3 | frlmplusgval.r | |- ( ph -> R e. V ) |
|
| 4 | frlmplusgval.i | |- ( ph -> I e. W ) |
|
| 5 | frlmplusgval.f | |- ( ph -> F e. B ) |
|
| 6 | frlmplusgval.g | |- ( ph -> G e. B ) |
|
| 7 | frlmplusgval.a | |- .+ = ( +g ` R ) |
|
| 8 | frlmplusgval.p | |- .+b = ( +g ` Y ) |
|
| 9 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 10 | 1 9 | frlmpws | |- ( ( R e. V /\ I e. W ) -> Y = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` Y ) ) ) |
| 11 | 3 4 10 | syl2anc | |- ( ph -> Y = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` Y ) ) ) |
| 12 | 11 | fveq2d | |- ( ph -> ( +g ` Y ) = ( +g ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` Y ) ) ) ) |
| 13 | fvex | |- ( Base ` Y ) e. _V |
|
| 14 | eqid | |- ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` Y ) ) = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` Y ) ) |
|
| 15 | eqid | |- ( +g ` ( ( ringLMod ` R ) ^s I ) ) = ( +g ` ( ( ringLMod ` R ) ^s I ) ) |
|
| 16 | 14 15 | ressplusg | |- ( ( Base ` Y ) e. _V -> ( +g ` ( ( ringLMod ` R ) ^s I ) ) = ( +g ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` Y ) ) ) ) |
| 17 | 13 16 | ax-mp | |- ( +g ` ( ( ringLMod ` R ) ^s I ) ) = ( +g ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` Y ) ) ) |
| 18 | 12 8 17 | 3eqtr4g | |- ( ph -> .+b = ( +g ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 19 | 18 | oveqd | |- ( ph -> ( F .+b G ) = ( F ( +g ` ( ( ringLMod ` R ) ^s I ) ) G ) ) |
| 20 | eqid | |- ( ( ringLMod ` R ) ^s I ) = ( ( ringLMod ` R ) ^s I ) |
|
| 21 | eqid | |- ( Base ` ( ( ringLMod ` R ) ^s I ) ) = ( Base ` ( ( ringLMod ` R ) ^s I ) ) |
|
| 22 | fvexd | |- ( ph -> ( ringLMod ` R ) e. _V ) |
|
| 23 | 1 2 | frlmpws | |- ( ( R e. V /\ I e. W ) -> Y = ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) |
| 24 | 3 4 23 | syl2anc | |- ( ph -> Y = ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) |
| 25 | 24 | fveq2d | |- ( ph -> ( Base ` Y ) = ( Base ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) ) |
| 26 | 2 25 | eqtrid | |- ( ph -> B = ( Base ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) ) |
| 27 | eqid | |- ( ( ( ringLMod ` R ) ^s I ) |`s B ) = ( ( ( ringLMod ` R ) ^s I ) |`s B ) |
|
| 28 | 27 21 | ressbasss | |- ( Base ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) C_ ( Base ` ( ( ringLMod ` R ) ^s I ) ) |
| 29 | 26 28 | eqsstrdi | |- ( ph -> B C_ ( Base ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 30 | 29 5 | sseldd | |- ( ph -> F e. ( Base ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 31 | 29 6 | sseldd | |- ( ph -> G e. ( Base ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 32 | rlmplusg | |- ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) |
|
| 33 | 7 32 | eqtri | |- .+ = ( +g ` ( ringLMod ` R ) ) |
| 34 | 20 21 22 4 30 31 33 15 | pwsplusgval | |- ( ph -> ( F ( +g ` ( ( ringLMod ` R ) ^s I ) ) G ) = ( F oF .+ G ) ) |
| 35 | 19 34 | eqtrd | |- ( ph -> ( F .+b G ) = ( F oF .+ G ) ) |