This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the base set of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by AV, 23-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmval.f | |- F = ( R freeLMod I ) |
|
| frlmelbas.n | |- N = ( Base ` R ) |
||
| frlmelbas.z | |- .0. = ( 0g ` R ) |
||
| frlmelbas.b | |- B = ( Base ` F ) |
||
| Assertion | frlmelbas | |- ( ( R e. V /\ I e. W ) -> ( X e. B <-> ( X e. ( N ^m I ) /\ X finSupp .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | |- F = ( R freeLMod I ) |
|
| 2 | frlmelbas.n | |- N = ( Base ` R ) |
|
| 3 | frlmelbas.z | |- .0. = ( 0g ` R ) |
|
| 4 | frlmelbas.b | |- B = ( Base ` F ) |
|
| 5 | eqid | |- { k e. ( N ^m I ) | k finSupp .0. } = { k e. ( N ^m I ) | k finSupp .0. } |
|
| 6 | 1 2 3 5 | frlmbas | |- ( ( R e. V /\ I e. W ) -> { k e. ( N ^m I ) | k finSupp .0. } = ( Base ` F ) ) |
| 7 | 4 6 | eqtr4id | |- ( ( R e. V /\ I e. W ) -> B = { k e. ( N ^m I ) | k finSupp .0. } ) |
| 8 | 7 | eleq2d | |- ( ( R e. V /\ I e. W ) -> ( X e. B <-> X e. { k e. ( N ^m I ) | k finSupp .0. } ) ) |
| 9 | breq1 | |- ( k = X -> ( k finSupp .0. <-> X finSupp .0. ) ) |
|
| 10 | 9 | elrab | |- ( X e. { k e. ( N ^m I ) | k finSupp .0. } <-> ( X e. ( N ^m I ) /\ X finSupp .0. ) ) |
| 11 | 8 10 | bitrdi | |- ( ( R e. V /\ I e. W ) -> ( X e. B <-> ( X e. ( N ^m I ) /\ X finSupp .0. ) ) ) |