This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frecseq123 | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → frecs ( 𝑅 , 𝐴 , 𝐹 ) = frecs ( 𝑆 , 𝐵 , 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → 𝐴 = 𝐵 ) | |
| 2 | 1 | sseq2d | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵 ) ) |
| 3 | equid | ⊢ 𝑦 = 𝑦 | |
| 4 | predeq123 | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑦 = 𝑦 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑆 , 𝐵 , 𝑦 ) ) | |
| 5 | 3 4 | mp3an3 | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑆 , 𝐵 , 𝑦 ) ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑆 , 𝐵 , 𝑦 ) ) |
| 7 | 6 | sseq1d | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ↔ Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ) |
| 8 | 7 | ralbidv | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ) |
| 9 | 2 8 | anbi12d | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ↔ ( 𝑥 ⊆ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ) ) |
| 10 | simp3 | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → 𝐹 = 𝐺 ) | |
| 11 | 10 | oveqd | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
| 12 | 6 | reseq2d | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) |
| 13 | 12 | oveq2d | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) |
| 14 | 11 13 | eqtrd | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) |
| 15 | 14 | eqeq2d | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) ) |
| 16 | 15 | ralbidv | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) ) |
| 17 | 9 16 | 3anbi23d | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) ) ) |
| 18 | 17 | exbidv | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) ) ) |
| 19 | 18 | abbidv | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) } ) |
| 20 | 19 | unieqd | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } = ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) } ) |
| 21 | df-frecs | ⊢ frecs ( 𝑅 , 𝐴 , 𝐹 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| 22 | df-frecs | ⊢ frecs ( 𝑆 , 𝐵 , 𝐺 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) } | |
| 23 | 20 21 22 | 3eqtr4g | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → frecs ( 𝑅 , 𝐴 , 𝐹 ) = frecs ( 𝑆 , 𝐵 , 𝐺 ) ) |