This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nffrecs.1 | ⊢ Ⅎ 𝑥 𝑅 | |
| nffrecs.2 | ⊢ Ⅎ 𝑥 𝐴 | ||
| nffrecs.3 | ⊢ Ⅎ 𝑥 𝐹 | ||
| Assertion | nffrecs | ⊢ Ⅎ 𝑥 frecs ( 𝑅 , 𝐴 , 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nffrecs.1 | ⊢ Ⅎ 𝑥 𝑅 | |
| 2 | nffrecs.2 | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | nffrecs.3 | ⊢ Ⅎ 𝑥 𝐹 | |
| 4 | df-frecs | ⊢ frecs ( 𝑅 , 𝐴 , 𝐹 ) = ∪ { 𝑓 ∣ ∃ 𝑦 ( 𝑓 Fn 𝑦 ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑦 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑓 ‘ 𝑧 ) = ( 𝑧 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) } | |
| 5 | nfv | ⊢ Ⅎ 𝑥 𝑓 Fn 𝑦 | |
| 6 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 7 | 6 2 | nfss | ⊢ Ⅎ 𝑥 𝑦 ⊆ 𝐴 |
| 8 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 9 | 1 2 8 | nfpred | ⊢ Ⅎ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑧 ) |
| 10 | 9 6 | nfss | ⊢ Ⅎ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑦 |
| 11 | 6 10 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ 𝑦 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑦 |
| 12 | 7 11 | nfan | ⊢ Ⅎ 𝑥 ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑦 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑦 ) |
| 13 | nfcv | ⊢ Ⅎ 𝑥 𝑓 | |
| 14 | 13 9 | nfres | ⊢ Ⅎ 𝑥 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 15 | 8 3 14 | nfov | ⊢ Ⅎ 𝑥 ( 𝑧 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 16 | 15 | nfeq2 | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑧 ) = ( 𝑧 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 17 | 6 16 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ 𝑦 ( 𝑓 ‘ 𝑧 ) = ( 𝑧 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 18 | 5 12 17 | nf3an | ⊢ Ⅎ 𝑥 ( 𝑓 Fn 𝑦 ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑦 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑓 ‘ 𝑧 ) = ( 𝑧 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 19 | 18 | nfex | ⊢ Ⅎ 𝑥 ∃ 𝑦 ( 𝑓 Fn 𝑦 ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑦 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑓 ‘ 𝑧 ) = ( 𝑧 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 20 | 19 | nfab | ⊢ Ⅎ 𝑥 { 𝑓 ∣ ∃ 𝑦 ( 𝑓 Fn 𝑦 ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑦 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑓 ‘ 𝑧 ) = ( 𝑧 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) } |
| 21 | 20 | nfuni | ⊢ Ⅎ 𝑥 ∪ { 𝑓 ∣ ∃ 𝑦 ( 𝑓 Fn 𝑦 ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑦 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑓 ‘ 𝑧 ) = ( 𝑧 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) } |
| 22 | 4 21 | nfcxfr | ⊢ Ⅎ 𝑥 frecs ( 𝑅 , 𝐴 , 𝐹 ) |