This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predeq123 | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑆 , 𝐵 , 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → 𝐴 = 𝐵 ) | |
| 2 | cnveq | ⊢ ( 𝑅 = 𝑆 → ◡ 𝑅 = ◡ 𝑆 ) | |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → ◡ 𝑅 = ◡ 𝑆 ) |
| 4 | sneq | ⊢ ( 𝑋 = 𝑌 → { 𝑋 } = { 𝑌 } ) | |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → { 𝑋 } = { 𝑌 } ) |
| 6 | 3 5 | imaeq12d | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → ( ◡ 𝑅 “ { 𝑋 } ) = ( ◡ 𝑆 “ { 𝑌 } ) ) |
| 7 | 1 6 | ineq12d | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑌 } ) ) ) |
| 8 | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
| 9 | df-pred | ⊢ Pred ( 𝑆 , 𝐵 , 𝑌 ) = ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑌 } ) ) | |
| 10 | 7 8 9 | 3eqtr4g | ⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑆 , 𝐵 , 𝑌 ) ) |