This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frecseq123 | |- ( ( R = S /\ A = B /\ F = G ) -> frecs ( R , A , F ) = frecs ( S , B , G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( R = S /\ A = B /\ F = G ) -> A = B ) |
|
| 2 | 1 | sseq2d | |- ( ( R = S /\ A = B /\ F = G ) -> ( x C_ A <-> x C_ B ) ) |
| 3 | equid | |- y = y |
|
| 4 | predeq123 | |- ( ( R = S /\ A = B /\ y = y ) -> Pred ( R , A , y ) = Pred ( S , B , y ) ) |
|
| 5 | 3 4 | mp3an3 | |- ( ( R = S /\ A = B ) -> Pred ( R , A , y ) = Pred ( S , B , y ) ) |
| 6 | 5 | 3adant3 | |- ( ( R = S /\ A = B /\ F = G ) -> Pred ( R , A , y ) = Pred ( S , B , y ) ) |
| 7 | 6 | sseq1d | |- ( ( R = S /\ A = B /\ F = G ) -> ( Pred ( R , A , y ) C_ x <-> Pred ( S , B , y ) C_ x ) ) |
| 8 | 7 | ralbidv | |- ( ( R = S /\ A = B /\ F = G ) -> ( A. y e. x Pred ( R , A , y ) C_ x <-> A. y e. x Pred ( S , B , y ) C_ x ) ) |
| 9 | 2 8 | anbi12d | |- ( ( R = S /\ A = B /\ F = G ) -> ( ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) <-> ( x C_ B /\ A. y e. x Pred ( S , B , y ) C_ x ) ) ) |
| 10 | simp3 | |- ( ( R = S /\ A = B /\ F = G ) -> F = G ) |
|
| 11 | 10 | oveqd | |- ( ( R = S /\ A = B /\ F = G ) -> ( y F ( f |` Pred ( R , A , y ) ) ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) |
| 12 | 6 | reseq2d | |- ( ( R = S /\ A = B /\ F = G ) -> ( f |` Pred ( R , A , y ) ) = ( f |` Pred ( S , B , y ) ) ) |
| 13 | 12 | oveq2d | |- ( ( R = S /\ A = B /\ F = G ) -> ( y G ( f |` Pred ( R , A , y ) ) ) = ( y G ( f |` Pred ( S , B , y ) ) ) ) |
| 14 | 11 13 | eqtrd | |- ( ( R = S /\ A = B /\ F = G ) -> ( y F ( f |` Pred ( R , A , y ) ) ) = ( y G ( f |` Pred ( S , B , y ) ) ) ) |
| 15 | 14 | eqeq2d | |- ( ( R = S /\ A = B /\ F = G ) -> ( ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) <-> ( f ` y ) = ( y G ( f |` Pred ( S , B , y ) ) ) ) ) |
| 16 | 15 | ralbidv | |- ( ( R = S /\ A = B /\ F = G ) -> ( A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) <-> A. y e. x ( f ` y ) = ( y G ( f |` Pred ( S , B , y ) ) ) ) ) |
| 17 | 9 16 | 3anbi23d | |- ( ( R = S /\ A = B /\ F = G ) -> ( ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) <-> ( f Fn x /\ ( x C_ B /\ A. y e. x Pred ( S , B , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( S , B , y ) ) ) ) ) ) |
| 18 | 17 | exbidv | |- ( ( R = S /\ A = B /\ F = G ) -> ( E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) <-> E. x ( f Fn x /\ ( x C_ B /\ A. y e. x Pred ( S , B , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( S , B , y ) ) ) ) ) ) |
| 19 | 18 | abbidv | |- ( ( R = S /\ A = B /\ F = G ) -> { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ B /\ A. y e. x Pred ( S , B , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( S , B , y ) ) ) ) } ) |
| 20 | 19 | unieqd | |- ( ( R = S /\ A = B /\ F = G ) -> U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) } = U. { f | E. x ( f Fn x /\ ( x C_ B /\ A. y e. x Pred ( S , B , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( S , B , y ) ) ) ) } ) |
| 21 | df-frecs | |- frecs ( R , A , F ) = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 22 | df-frecs | |- frecs ( S , B , G ) = U. { f | E. x ( f Fn x /\ ( x C_ B /\ A. y e. x Pred ( S , B , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( S , B , y ) ) ) ) } |
|
| 23 | 20 21 22 | 3eqtr4g | |- ( ( R = S /\ A = B /\ F = G ) -> frecs ( R , A , F ) = frecs ( S , B , G ) ) |