This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty subset of an R -well-founded class has an R -minimal element (deduction form). (Contributed by BJ, 16-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frd.fr | ||
| frd.ss | |||
| frd.ex | |||
| frd.n0 | |||
| Assertion | frd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frd.fr | ||
| 2 | frd.ss | ||
| 3 | frd.ex | ||
| 4 | frd.n0 | ||
| 5 | simpr | ||
| 6 | biidd | ||
| 7 | 5 6 | raleqbidv | |
| 8 | 5 7 | rexeqbidv | |
| 9 | 3 2 | elpwd | |
| 10 | nelsn | ||
| 11 | 4 10 | syl | |
| 12 | 9 11 | eldifd | |
| 13 | dffr6 | ||
| 14 | 1 13 | sylib | |
| 15 | 8 12 14 | rspcdv2 |