This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty subset of an R -well-founded class has an R -minimal element (deduction form). (Contributed by BJ, 16-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frd.fr | |- ( ph -> R Fr A ) |
|
| frd.ss | |- ( ph -> B C_ A ) |
||
| frd.ex | |- ( ph -> B e. V ) |
||
| frd.n0 | |- ( ph -> B =/= (/) ) |
||
| Assertion | frd | |- ( ph -> E. x e. B A. y e. B -. y R x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frd.fr | |- ( ph -> R Fr A ) |
|
| 2 | frd.ss | |- ( ph -> B C_ A ) |
|
| 3 | frd.ex | |- ( ph -> B e. V ) |
|
| 4 | frd.n0 | |- ( ph -> B =/= (/) ) |
|
| 5 | simpr | |- ( ( ph /\ z = B ) -> z = B ) |
|
| 6 | biidd | |- ( ( ph /\ z = B ) -> ( -. y R x <-> -. y R x ) ) |
|
| 7 | 5 6 | raleqbidv | |- ( ( ph /\ z = B ) -> ( A. y e. z -. y R x <-> A. y e. B -. y R x ) ) |
| 8 | 5 7 | rexeqbidv | |- ( ( ph /\ z = B ) -> ( E. x e. z A. y e. z -. y R x <-> E. x e. B A. y e. B -. y R x ) ) |
| 9 | 3 2 | elpwd | |- ( ph -> B e. ~P A ) |
| 10 | nelsn | |- ( B =/= (/) -> -. B e. { (/) } ) |
|
| 11 | 4 10 | syl | |- ( ph -> -. B e. { (/) } ) |
| 12 | 9 11 | eldifd | |- ( ph -> B e. ( ~P A \ { (/) } ) ) |
| 13 | dffr6 | |- ( R Fr A <-> A. z e. ( ~P A \ { (/) } ) E. x e. z A. y e. z -. y R x ) |
|
| 14 | 1 13 | sylib | |- ( ph -> A. z e. ( ~P A \ { (/) } ) E. x e. z A. y e. z -. y R x ) |
| 15 | 8 12 14 | rspcdv2 | |- ( ph -> E. x e. B A. y e. B -. y R x ) |