This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite product of integers is divisible by any of its factors being function values. (Contributed by AV, 1-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodfvdvdsd.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fprodfvdvdsd.b | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | ||
| fprodfvdvdsd.f | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ℤ ) | ||
| Assertion | fprodfvdvdsd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∥ ∏ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodfvdvdsd.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fprodfvdvdsd.b | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 3 | fprodfvdvdsd.f | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ℤ ) | |
| 4 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ Fin ) |
| 5 | diffi | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝑥 } ) ∈ Fin ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) ∈ Fin ) |
| 7 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝐹 : 𝐵 ⟶ ℤ ) |
| 8 | 2 | ssdifssd | ⊢ ( 𝜑 → ( 𝐴 ∖ { 𝑥 } ) ⊆ 𝐵 ) |
| 9 | 8 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑘 ∈ 𝐵 ) |
| 10 | 7 9 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) |
| 11 | 10 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) |
| 12 | 6 11 | fprodzcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) |
| 13 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐵 ⟶ ℤ ) |
| 14 | 2 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 15 | 13 14 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
| 16 | dvdsmul2 | ⊢ ( ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) → ( 𝐹 ‘ 𝑥 ) ∥ ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ( 𝐹 ‘ 𝑥 ) ) ) | |
| 17 | 12 15 16 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∥ ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
| 18 | 17 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∥ ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
| 19 | neldifsnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ∈ ( 𝐴 ∖ { 𝑥 } ) ) | |
| 20 | disjsn | ⊢ ( ( ( 𝐴 ∖ { 𝑥 } ) ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥 ∈ ( 𝐴 ∖ { 𝑥 } ) ) | |
| 21 | 19 20 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 ∖ { 𝑥 } ) ∩ { 𝑥 } ) = ∅ ) |
| 22 | difsnid | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = 𝐴 ) | |
| 23 | 22 | eqcomd | ⊢ ( 𝑥 ∈ 𝐴 → 𝐴 = ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) |
| 24 | 23 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 = ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) |
| 25 | 13 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐹 : 𝐵 ⟶ ℤ ) |
| 26 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ 𝐵 ) |
| 27 | 26 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐵 ) |
| 28 | 25 27 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) |
| 29 | 28 | zcnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 30 | 21 24 4 29 | fprodsplit | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∏ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ∏ 𝑘 ∈ { 𝑥 } ( 𝐹 ‘ 𝑘 ) ) ) |
| 31 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 32 | 15 | zcnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 33 | fveq2 | ⊢ ( 𝑘 = 𝑥 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 34 | 33 | prodsn | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) → ∏ 𝑘 ∈ { 𝑥 } ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 35 | 31 32 34 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∏ 𝑘 ∈ { 𝑥 } ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 36 | 35 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ∏ 𝑘 ∈ { 𝑥 } ( 𝐹 ‘ 𝑘 ) ) = ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
| 37 | 30 36 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∏ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
| 38 | 37 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∥ ∏ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑥 ) ∥ ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 39 | 38 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∥ ∏ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∥ ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 40 | 18 39 | mpbird | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∥ ∏ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ) |