This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite product of integers is divisible by any of its factors. (Contributed by AV, 14-Aug-2020) (Proof shortened by AV, 2-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fproddvdsd.f | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fproddvdsd.s | ⊢ ( 𝜑 → 𝐴 ⊆ ℤ ) | ||
| Assertion | fproddvdsd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ∥ ∏ 𝑘 ∈ 𝐴 𝑘 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fproddvdsd.f | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fproddvdsd.s | ⊢ ( 𝜑 → 𝐴 ⊆ ℤ ) | |
| 3 | f1oi | ⊢ ( I ↾ ℤ ) : ℤ –1-1-onto→ ℤ | |
| 4 | f1of | ⊢ ( ( I ↾ ℤ ) : ℤ –1-1-onto→ ℤ → ( I ↾ ℤ ) : ℤ ⟶ ℤ ) | |
| 5 | 3 4 | mp1i | ⊢ ( 𝜑 → ( I ↾ ℤ ) : ℤ ⟶ ℤ ) |
| 6 | 1 2 5 | fprodfvdvdsd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( ( I ↾ ℤ ) ‘ 𝑥 ) ∥ ∏ 𝑘 ∈ 𝐴 ( ( I ↾ ℤ ) ‘ 𝑘 ) ) |
| 7 | 2 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℤ ) |
| 8 | fvresi | ⊢ ( 𝑥 ∈ ℤ → ( ( I ↾ ℤ ) ‘ 𝑥 ) = 𝑥 ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( I ↾ ℤ ) ‘ 𝑥 ) = 𝑥 ) |
| 10 | 9 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 = ( ( I ↾ ℤ ) ‘ 𝑥 ) ) |
| 11 | 2 | sseld | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝑘 ∈ ℤ ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐴 → 𝑘 ∈ ℤ ) ) |
| 13 | 12 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ℤ ) |
| 14 | fvresi | ⊢ ( 𝑘 ∈ ℤ → ( ( I ↾ ℤ ) ‘ 𝑘 ) = 𝑘 ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → ( ( I ↾ ℤ ) ‘ 𝑘 ) = 𝑘 ) |
| 16 | 15 | eqcomd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 = ( ( I ↾ ℤ ) ‘ 𝑘 ) ) |
| 17 | 16 | prodeq2dv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∏ 𝑘 ∈ 𝐴 𝑘 = ∏ 𝑘 ∈ 𝐴 ( ( I ↾ ℤ ) ‘ 𝑘 ) ) |
| 18 | 10 17 | breq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∥ ∏ 𝑘 ∈ 𝐴 𝑘 ↔ ( ( I ↾ ℤ ) ‘ 𝑥 ) ∥ ∏ 𝑘 ∈ 𝐴 ( ( I ↾ ℤ ) ‘ 𝑘 ) ) ) |
| 19 | 18 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝑥 ∥ ∏ 𝑘 ∈ 𝐴 𝑘 ↔ ∀ 𝑥 ∈ 𝐴 ( ( I ↾ ℤ ) ‘ 𝑥 ) ∥ ∏ 𝑘 ∈ 𝐴 ( ( I ↾ ℤ ) ‘ 𝑘 ) ) ) |
| 20 | 6 19 | mpbird | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ∥ ∏ 𝑘 ∈ 𝐴 𝑘 ) |