This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodmul.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fprodmul.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| fprodmul.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | ||
| fproddiv.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ≠ 0 ) | ||
| Assertion | fproddiv | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 / ∏ 𝑘 ∈ 𝐴 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodmul.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fprodmul.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | fprodmul.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | |
| 4 | fproddiv.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ≠ 0 ) | |
| 5 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 6 | 5 | eqcomi | ⊢ 1 = ( 1 / 1 ) |
| 7 | prodeq1 | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ∏ 𝑘 ∈ ∅ ( 𝐵 / 𝐶 ) ) | |
| 8 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ ( 𝐵 / 𝐶 ) = 1 | |
| 9 | 7 8 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = 1 ) |
| 10 | prodeq1 | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) | |
| 11 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 | |
| 12 | 10 11 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = 1 ) |
| 13 | prodeq1 | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ ∅ 𝐶 ) | |
| 14 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ 𝐶 = 1 | |
| 15 | 13 14 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐶 = 1 ) |
| 16 | 12 15 | oveq12d | ⊢ ( 𝐴 = ∅ → ( ∏ 𝑘 ∈ 𝐴 𝐵 / ∏ 𝑘 ∈ 𝐴 𝐶 ) = ( 1 / 1 ) ) |
| 17 | 6 9 16 | 3eqtr4a | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 / ∏ 𝑘 ∈ 𝐴 𝐶 ) ) |
| 18 | 17 | a1i | ⊢ ( 𝜑 → ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 / ∏ 𝑘 ∈ 𝐴 𝐶 ) ) ) |
| 19 | simprl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) | |
| 20 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 21 | 19 20 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 22 | 2 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 23 | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) | |
| 24 | 23 | adantl | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 25 | fco | ⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) | |
| 26 | 22 24 25 | syl2an | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) |
| 27 | 26 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) ∈ ℂ ) |
| 28 | 3 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
| 29 | fco | ⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) | |
| 30 | 28 24 29 | syl2an | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) |
| 31 | 30 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ‘ 𝑛 ) ∈ ℂ ) |
| 32 | simprr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | |
| 33 | 32 23 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 34 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 35 | 33 34 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 36 | 33 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) |
| 37 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) | |
| 38 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) | |
| 39 | 38 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
| 40 | 37 3 39 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
| 41 | 40 4 | eqnetrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ≠ 0 ) |
| 42 | 41 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ≠ 0 ) |
| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ≠ 0 ) |
| 44 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) | |
| 45 | nfcv | ⊢ Ⅎ 𝑘 0 | |
| 46 | 44 45 | nfne | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ≠ 0 |
| 47 | fveq2 | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 48 | 47 | neeq1d | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ≠ 0 ↔ ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ≠ 0 ) ) |
| 49 | 46 48 | rspc | ⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ≠ 0 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ≠ 0 ) ) |
| 50 | 36 43 49 | sylc | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ≠ 0 ) |
| 51 | 35 50 | eqnetrd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ‘ 𝑛 ) ≠ 0 ) |
| 52 | 2 3 4 | divcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
| 53 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) | |
| 54 | 53 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝐴 ∧ ( 𝐵 / 𝐶 ) ∈ ℂ ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ 𝑘 ) = ( 𝐵 / 𝐶 ) ) |
| 55 | 37 52 54 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ 𝑘 ) = ( 𝐵 / 𝐶 ) ) |
| 56 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) | |
| 57 | 56 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) |
| 58 | 37 2 57 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) |
| 59 | 58 40 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) / ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) = ( 𝐵 / 𝐶 ) ) |
| 60 | 55 59 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) / ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) ) |
| 61 | 60 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) / ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) ) |
| 62 | 61 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) / ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) ) |
| 63 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) | |
| 64 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) | |
| 65 | nfcv | ⊢ Ⅎ 𝑘 / | |
| 66 | 64 65 44 | nfov | ⊢ Ⅎ 𝑘 ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) / ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 67 | 63 66 | nfeq | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) / ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 68 | fveq2 | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 69 | fveq2 | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 70 | 69 47 | oveq12d | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) / ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) / ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 71 | 68 70 | eqeq12d | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) / ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) ↔ ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) / ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) |
| 72 | 67 71 | rspc | ⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) / ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) / ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) |
| 73 | 36 62 72 | sylc | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) / ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 74 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 75 | 33 74 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 76 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 77 | 33 76 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 78 | 77 35 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) / ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ‘ 𝑛 ) ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) / ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 79 | 73 75 78 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) / ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ‘ 𝑛 ) ) ) |
| 80 | 21 27 31 51 79 | prodfdiv | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) / ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 81 | fveq2 | ⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 82 | 52 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) : 𝐴 ⟶ ℂ ) |
| 83 | 82 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) : 𝐴 ⟶ ℂ ) |
| 84 | 83 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 85 | 81 19 32 84 75 | fprod | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 86 | fveq2 | ⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 87 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 88 | 87 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ∈ ℂ ) |
| 89 | 86 19 32 88 77 | fprod | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 90 | fveq2 | ⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 91 | 28 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
| 92 | 91 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
| 93 | 90 19 32 92 35 | fprod | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 94 | 89 93 | oveq12d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) / ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ) = ( ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) / ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 95 | 80 85 94 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ 𝑚 ) = ( ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) / ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ) ) |
| 96 | prodfc | ⊢ ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ‘ 𝑚 ) = ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) | |
| 97 | prodfc | ⊢ ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ 𝐴 𝐵 | |
| 98 | prodfc | ⊢ ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ 𝐴 𝐶 | |
| 99 | 97 98 | oveq12i | ⊢ ( ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) / ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 / ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 100 | 95 96 99 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 / ∏ 𝑘 ∈ 𝐴 𝐶 ) ) |
| 101 | 100 | expr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 / ∏ 𝑘 ∈ 𝐴 𝐶 ) ) ) |
| 102 | 101 | exlimdv | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 / ∏ 𝑘 ∈ 𝐴 𝐶 ) ) ) |
| 103 | 102 | expimpd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 / ∏ 𝑘 ∈ 𝐴 𝐶 ) ) ) |
| 104 | fz1f1o | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) | |
| 105 | 1 104 | syl | ⊢ ( 𝜑 → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
| 106 | 18 103 105 | mpjaod | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 / ∏ 𝑘 ∈ 𝐴 𝐶 ) ) |