This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dom2d.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) | |
| dom2d.2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐶 = 𝐷 ↔ 𝑥 = 𝑦 ) ) ) | ||
| dom3d.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| dom3d.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| Assertion | dom3d | ⊢ ( 𝜑 → 𝐴 ≼ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dom2d.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) | |
| 2 | dom2d.2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐶 = 𝐷 ↔ 𝑥 = 𝑦 ) ) ) | |
| 3 | dom3d.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | dom3d.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 5 | 1 2 | dom2lem | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1→ 𝐵 ) |
| 6 | f1f | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1→ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ) |
| 8 | fex2 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ V ) | |
| 9 | 7 3 4 8 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ V ) |
| 10 | f1eq1 | ⊢ ( 𝑧 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( 𝑧 : 𝐴 –1-1→ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1→ 𝐵 ) ) | |
| 11 | 9 5 10 | spcedv | ⊢ ( 𝜑 → ∃ 𝑧 𝑧 : 𝐴 –1-1→ 𝐵 ) |
| 12 | brdomg | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑧 𝑧 : 𝐴 –1-1→ 𝐵 ) ) | |
| 13 | 4 12 | syl | ⊢ ( 𝜑 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑧 𝑧 : 𝐴 –1-1→ 𝐵 ) ) |
| 14 | 11 13 | mpbird | ⊢ ( 𝜑 → 𝐴 ≼ 𝐵 ) |