This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013) (Revised by Mario Carneiro, 30-Apr-2015) (Revised by AV, 16-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnunop.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| fnunop.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑊 ) | ||
| fnunop.f | ⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) | ||
| fnunop.g | ⊢ 𝐺 = ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) | ||
| fnunop.e | ⊢ 𝐸 = ( 𝐷 ∪ { 𝑋 } ) | ||
| fnunop.d | ⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝐷 ) | ||
| Assertion | fnunop | ⊢ ( 𝜑 → 𝐺 Fn 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnunop.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 2 | fnunop.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑊 ) | |
| 3 | fnunop.f | ⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) | |
| 4 | fnunop.g | ⊢ 𝐺 = ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) | |
| 5 | fnunop.e | ⊢ 𝐸 = ( 𝐷 ∪ { 𝑋 } ) | |
| 6 | fnunop.d | ⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝐷 ) | |
| 7 | fnsng | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → { 〈 𝑋 , 𝑌 〉 } Fn { 𝑋 } ) | |
| 8 | 1 2 7 | syl2anc | ⊢ ( 𝜑 → { 〈 𝑋 , 𝑌 〉 } Fn { 𝑋 } ) |
| 9 | disjsn | ⊢ ( ( 𝐷 ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ 𝐷 ) | |
| 10 | 6 9 | sylibr | ⊢ ( 𝜑 → ( 𝐷 ∩ { 𝑋 } ) = ∅ ) |
| 11 | 3 8 10 | fnund | ⊢ ( 𝜑 → ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) Fn ( 𝐷 ∪ { 𝑋 } ) ) |
| 12 | 4 | fneq1i | ⊢ ( 𝐺 Fn 𝐸 ↔ ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) Fn 𝐸 ) |
| 13 | 5 | fneq2i | ⊢ ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) Fn 𝐸 ↔ ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) Fn ( 𝐷 ∪ { 𝑋 } ) ) |
| 14 | 12 13 | bitri | ⊢ ( 𝐺 Fn 𝐸 ↔ ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) Fn ( 𝐷 ∪ { 𝑋 } ) ) |
| 15 | 11 14 | sylibr | ⊢ ( 𝜑 → 𝐺 Fn 𝐸 ) |