This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fnunop
Metamath Proof Explorer
Description: Extension of a function with a new ordered pair. (Contributed by NM , 28-Sep-2013) (Revised by Mario Carneiro , 30-Apr-2015) (Revised by AV , 16-Aug-2024)
Ref
Expression
Hypotheses
fnunop.x
⊢ φ → X ∈ V
fnunop.y
⊢ φ → Y ∈ W
fnunop.f
⊢ φ → F Fn D
fnunop.g
⊢ G = F ∪ X Y
fnunop.e
⊢ E = D ∪ X
fnunop.d
⊢ φ → ¬ X ∈ D
Assertion
fnunop
⊢ φ → G Fn E
Proof
Step
Hyp
Ref
Expression
1
fnunop.x
⊢ φ → X ∈ V
2
fnunop.y
⊢ φ → Y ∈ W
3
fnunop.f
⊢ φ → F Fn D
4
fnunop.g
⊢ G = F ∪ X Y
5
fnunop.e
⊢ E = D ∪ X
6
fnunop.d
⊢ φ → ¬ X ∈ D
7
fnsng
⊢ X ∈ V ∧ Y ∈ W → X Y Fn X
8
1 2 7
syl2anc
⊢ φ → X Y Fn X
9
disjsn
⊢ D ∩ X = ∅ ↔ ¬ X ∈ D
10
6 9
sylibr
⊢ φ → D ∩ X = ∅
11
3 8 10
fnund
⊢ φ → F ∪ X Y Fn D ∪ X
12
4
fneq1i
⊢ G Fn E ↔ F ∪ X Y Fn E
13
5
fneq2i
⊢ F ∪ X Y Fn E ↔ F ∪ X Y Fn D ∪ X
14
12 13
bitri
⊢ G Fn E ↔ F ∪ X Y Fn D ∪ X
15
11 14
sylibr
⊢ φ → G Fn E