This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013) (Revised by Mario Carneiro, 30-Apr-2015) (Revised by AV, 16-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnunop.x | |- ( ph -> X e. V ) |
|
| fnunop.y | |- ( ph -> Y e. W ) |
||
| fnunop.f | |- ( ph -> F Fn D ) |
||
| fnunop.g | |- G = ( F u. { <. X , Y >. } ) |
||
| fnunop.e | |- E = ( D u. { X } ) |
||
| fnunop.d | |- ( ph -> -. X e. D ) |
||
| Assertion | fnunop | |- ( ph -> G Fn E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnunop.x | |- ( ph -> X e. V ) |
|
| 2 | fnunop.y | |- ( ph -> Y e. W ) |
|
| 3 | fnunop.f | |- ( ph -> F Fn D ) |
|
| 4 | fnunop.g | |- G = ( F u. { <. X , Y >. } ) |
|
| 5 | fnunop.e | |- E = ( D u. { X } ) |
|
| 6 | fnunop.d | |- ( ph -> -. X e. D ) |
|
| 7 | fnsng | |- ( ( X e. V /\ Y e. W ) -> { <. X , Y >. } Fn { X } ) |
|
| 8 | 1 2 7 | syl2anc | |- ( ph -> { <. X , Y >. } Fn { X } ) |
| 9 | disjsn | |- ( ( D i^i { X } ) = (/) <-> -. X e. D ) |
|
| 10 | 6 9 | sylibr | |- ( ph -> ( D i^i { X } ) = (/) ) |
| 11 | 3 8 10 | fnund | |- ( ph -> ( F u. { <. X , Y >. } ) Fn ( D u. { X } ) ) |
| 12 | 4 | fneq1i | |- ( G Fn E <-> ( F u. { <. X , Y >. } ) Fn E ) |
| 13 | 5 | fneq2i | |- ( ( F u. { <. X , Y >. } ) Fn E <-> ( F u. { <. X , Y >. } ) Fn ( D u. { X } ) ) |
| 14 | 12 13 | bitri | |- ( G Fn E <-> ( F u. { <. X , Y >. } ) Fn ( D u. { X } ) ) |
| 15 | 11 14 | sylibr | |- ( ph -> G Fn E ) |