This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of fnsnb as of 21-Oct-2025. A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) Revised to add reverse implication. (Revised by NM, 29-Dec-2018) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fnsnb.1 | ⊢ 𝐴 ∈ V | |
| Assertion | fnsnbOLD | ⊢ ( 𝐹 Fn { 𝐴 } ↔ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnb.1 | ⊢ 𝐴 ∈ V | |
| 2 | fnsnr | ⊢ ( 𝐹 Fn { 𝐴 } → ( 𝑥 ∈ 𝐹 → 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) ) | |
| 3 | df-fn | ⊢ ( 𝐹 Fn { 𝐴 } ↔ ( Fun 𝐹 ∧ dom 𝐹 = { 𝐴 } ) ) | |
| 4 | 1 | snid | ⊢ 𝐴 ∈ { 𝐴 } |
| 5 | eleq2 | ⊢ ( dom 𝐹 = { 𝐴 } → ( 𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ { 𝐴 } ) ) | |
| 6 | 4 5 | mpbiri | ⊢ ( dom 𝐹 = { 𝐴 } → 𝐴 ∈ dom 𝐹 ) |
| 7 | 6 | anim2i | ⊢ ( ( Fun 𝐹 ∧ dom 𝐹 = { 𝐴 } ) → ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) ) |
| 8 | 3 7 | sylbi | ⊢ ( 𝐹 Fn { 𝐴 } → ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) ) |
| 9 | funfvop | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐹 Fn { 𝐴 } → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) |
| 11 | eleq1 | ⊢ ( 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 → ( 𝑥 ∈ 𝐹 ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) ) | |
| 12 | 10 11 | syl5ibrcom | ⊢ ( 𝐹 Fn { 𝐴 } → ( 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 → 𝑥 ∈ 𝐹 ) ) |
| 13 | 2 12 | impbid | ⊢ ( 𝐹 Fn { 𝐴 } → ( 𝑥 ∈ 𝐹 ↔ 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) ) |
| 14 | velsn | ⊢ ( 𝑥 ∈ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ↔ 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) | |
| 15 | 13 14 | bitr4di | ⊢ ( 𝐹 Fn { 𝐴 } → ( 𝑥 ∈ 𝐹 ↔ 𝑥 ∈ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |
| 16 | 15 | eqrdv | ⊢ ( 𝐹 Fn { 𝐴 } → 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
| 17 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 18 | 1 17 | fnsn | ⊢ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } Fn { 𝐴 } |
| 19 | fneq1 | ⊢ ( 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } → ( 𝐹 Fn { 𝐴 } ↔ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } Fn { 𝐴 } ) ) | |
| 20 | 18 19 | mpbiri | ⊢ ( 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } → 𝐹 Fn { 𝐴 } ) |
| 21 | 16 20 | impbii | ⊢ ( 𝐹 Fn { 𝐴 } ↔ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |